Loading…

A remark on the paper “Laterally closed lattice homomorphisms”

A new and simple proof of the main result of the paper “Laterally closed lattice homomorphisms” by Toumi and Toumi (J Math Anal Appl 324:1178–1194, 2006 ) is given following the paper “Extension of Riesz homomorphisms, I” by Buskes (J Aust Math Soc Ser A 39(1):107–120, 1985 ).

Saved in:
Bibliographic Details
Published in:Positivity : an international journal devoted to the theory and applications of positivity in analysis 2014-06, Vol.18 (2), p.219-221
Main Author: Ercan, Z.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-c38b59ef9dc3cefcf32b77e51b29ab138881396008b4bbe14ca8f29bf4e842e13
cites cdi_FETCH-LOGICAL-c316t-c38b59ef9dc3cefcf32b77e51b29ab138881396008b4bbe14ca8f29bf4e842e13
container_end_page 221
container_issue 2
container_start_page 219
container_title Positivity : an international journal devoted to the theory and applications of positivity in analysis
container_volume 18
creator Ercan, Z.
description A new and simple proof of the main result of the paper “Laterally closed lattice homomorphisms” by Toumi and Toumi (J Math Anal Appl 324:1178–1194, 2006 ) is given following the paper “Extension of Riesz homomorphisms, I” by Buskes (J Aust Math Soc Ser A 39(1):107–120, 1985 ).
doi_str_mv 10.1007/s11117-013-0241-9
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1532420235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3324941651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-c38b59ef9dc3cefcf32b77e51b29ab138881396008b4bbe14ca8f29bf4e842e13</originalsourceid><addsrcrecordid>eNp1ULFOAzEMjRBIlMIHsEViPoiTXC8ZSwUFqRILzFGSOrTl2juS69CtHwI_1y8h1TGwYEu2h_ee7UfINbBbYKy6S5CjKhiIgnEJhT4hAygrXmiu4DTPQpUFcM3PyUVKK8YyS7IBuR_TiGsbP2izod0CaWtbjPSw_5rZDqOt6x31dZNwTmvbdUuPdNGsc8Z2sUzrdNh_X5KzYOuEV799SN4eH14nT8XsZfo8Gc8KL2DU5apcqTHouRcegw-Cu6rCEhzX1uX7lAKhR4wpJ51DkN6qwLULEpXkCGJIbnrdNjafW0ydWTXbuMkrDZSCS864KDMKepSPTUoRg2njMj-4M8DM0SrTW2WyVeZoldGZw3tOytjNO8Y_yv-SfgC8jG03</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1532420235</pqid></control><display><type>article</type><title>A remark on the paper “Laterally closed lattice homomorphisms”</title><source>Business Source Ultimate</source><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Ercan, Z.</creator><creatorcontrib>Ercan, Z.</creatorcontrib><description>A new and simple proof of the main result of the paper “Laterally closed lattice homomorphisms” by Toumi and Toumi (J Math Anal Appl 324:1178–1194, 2006 ) is given following the paper “Extension of Riesz homomorphisms, I” by Buskes (J Aust Math Soc Ser A 39(1):107–120, 1985 ).</description><identifier>ISSN: 1385-1292</identifier><identifier>EISSN: 1572-9281</identifier><identifier>DOI: 10.1007/s11117-013-0241-9</identifier><language>eng</language><publisher>Basel: Springer Basel</publisher><subject>Calculus of Variations and Optimal Control; Optimization ; Econometrics ; Fourier Analysis ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Numbers ; Operator Theory ; Potential Theory ; Studies ; Theorems</subject><ispartof>Positivity : an international journal devoted to the theory and applications of positivity in analysis, 2014-06, Vol.18 (2), p.219-221</ispartof><rights>Springer Basel 2013</rights><rights>Springer Basel 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-c38b59ef9dc3cefcf32b77e51b29ab138881396008b4bbe14ca8f29bf4e842e13</citedby><cites>FETCH-LOGICAL-c316t-c38b59ef9dc3cefcf32b77e51b29ab138881396008b4bbe14ca8f29bf4e842e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1532420235/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1532420235?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11687,27923,27924,36059,44362,74666</link.rule.ids></links><search><creatorcontrib>Ercan, Z.</creatorcontrib><title>A remark on the paper “Laterally closed lattice homomorphisms”</title><title>Positivity : an international journal devoted to the theory and applications of positivity in analysis</title><addtitle>Positivity</addtitle><description>A new and simple proof of the main result of the paper “Laterally closed lattice homomorphisms” by Toumi and Toumi (J Math Anal Appl 324:1178–1194, 2006 ) is given following the paper “Extension of Riesz homomorphisms, I” by Buskes (J Aust Math Soc Ser A 39(1):107–120, 1985 ).</description><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Econometrics</subject><subject>Fourier Analysis</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numbers</subject><subject>Operator Theory</subject><subject>Potential Theory</subject><subject>Studies</subject><subject>Theorems</subject><issn>1385-1292</issn><issn>1572-9281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1ULFOAzEMjRBIlMIHsEViPoiTXC8ZSwUFqRILzFGSOrTl2juS69CtHwI_1y8h1TGwYEu2h_ee7UfINbBbYKy6S5CjKhiIgnEJhT4hAygrXmiu4DTPQpUFcM3PyUVKK8YyS7IBuR_TiGsbP2izod0CaWtbjPSw_5rZDqOt6x31dZNwTmvbdUuPdNGsc8Z2sUzrdNh_X5KzYOuEV799SN4eH14nT8XsZfo8Gc8KL2DU5apcqTHouRcegw-Cu6rCEhzX1uX7lAKhR4wpJ51DkN6qwLULEpXkCGJIbnrdNjafW0ydWTXbuMkrDZSCS864KDMKepSPTUoRg2njMj-4M8DM0SrTW2WyVeZoldGZw3tOytjNO8Y_yv-SfgC8jG03</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Ercan, Z.</creator><general>Springer Basel</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20140601</creationdate><title>A remark on the paper “Laterally closed lattice homomorphisms”</title><author>Ercan, Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-c38b59ef9dc3cefcf32b77e51b29ab138881396008b4bbe14ca8f29bf4e842e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Econometrics</topic><topic>Fourier Analysis</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numbers</topic><topic>Operator Theory</topic><topic>Potential Theory</topic><topic>Studies</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ercan, Z.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Positivity : an international journal devoted to the theory and applications of positivity in analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ercan, Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A remark on the paper “Laterally closed lattice homomorphisms”</atitle><jtitle>Positivity : an international journal devoted to the theory and applications of positivity in analysis</jtitle><stitle>Positivity</stitle><date>2014-06-01</date><risdate>2014</risdate><volume>18</volume><issue>2</issue><spage>219</spage><epage>221</epage><pages>219-221</pages><issn>1385-1292</issn><eissn>1572-9281</eissn><abstract>A new and simple proof of the main result of the paper “Laterally closed lattice homomorphisms” by Toumi and Toumi (J Math Anal Appl 324:1178–1194, 2006 ) is given following the paper “Extension of Riesz homomorphisms, I” by Buskes (J Aust Math Soc Ser A 39(1):107–120, 1985 ).</abstract><cop>Basel</cop><pub>Springer Basel</pub><doi>10.1007/s11117-013-0241-9</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1385-1292
ispartof Positivity : an international journal devoted to the theory and applications of positivity in analysis, 2014-06, Vol.18 (2), p.219-221
issn 1385-1292
1572-9281
language eng
recordid cdi_proquest_journals_1532420235
source Business Source Ultimate; ABI/INFORM Global; Springer Nature
subjects Calculus of Variations and Optimal Control
Optimization
Econometrics
Fourier Analysis
Mathematical analysis
Mathematics
Mathematics and Statistics
Numbers
Operator Theory
Potential Theory
Studies
Theorems
title A remark on the paper “Laterally closed lattice homomorphisms”
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A02%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20remark%20on%20the%20paper%20%E2%80%9CLaterally%20closed%20lattice%20homomorphisms%E2%80%9D&rft.jtitle=Positivity%20:%20an%20international%20journal%20devoted%20to%20the%20theory%20and%20applications%20of%20positivity%20in%20analysis&rft.au=Ercan,%20Z.&rft.date=2014-06-01&rft.volume=18&rft.issue=2&rft.spage=219&rft.epage=221&rft.pages=219-221&rft.issn=1385-1292&rft.eissn=1572-9281&rft_id=info:doi/10.1007/s11117-013-0241-9&rft_dat=%3Cproquest_cross%3E3324941651%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-c38b59ef9dc3cefcf32b77e51b29ab138881396008b4bbe14ca8f29bf4e842e13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1532420235&rft_id=info:pmid/&rfr_iscdi=true