Loading…

Daily global solar radiation prediction based on a hybrid Coral Reefs Optimization – Extreme Learning Machine approach

•This paper presents a hybrid CRO–ELM algorithm for solar radiation prediction.•Novel predictive meteorological variables are considered in this problem.•The CRO is a novel meta-heuristic search algorithm based on simulation of Coral Reefs.•The Extreme Learning Machine (ELM) is a state of the art me...

Full description

Saved in:
Bibliographic Details
Published in:Solar energy 2014-07, Vol.105, p.91-98
Main Authors: Salcedo-Sanz, S., Casanova-Mateo, C., Pastor-Sánchez, A., Sánchez-Girón, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c367t-e4babf2138011245b4c57e1d5ea825b42618fd7de680e6b2809d9e12fd0eb4313
cites cdi_FETCH-LOGICAL-c367t-e4babf2138011245b4c57e1d5ea825b42618fd7de680e6b2809d9e12fd0eb4313
container_end_page 98
container_issue
container_start_page 91
container_title Solar energy
container_volume 105
creator Salcedo-Sanz, S.
Casanova-Mateo, C.
Pastor-Sánchez, A.
Sánchez-Girón, M.
description •This paper presents a hybrid CRO–ELM algorithm for solar radiation prediction.•Novel predictive meteorological variables are considered in this problem.•The CRO is a novel meta-heuristic search algorithm based on simulation of Coral Reefs.•The Extreme Learning Machine (ELM) is a state of the art method for training neural networks.•The proposed hybrid approach has shown excellent results in real data in Spain. This paper discusses the performance of a novel Coral Reefs Optimization – Extreme Learning Machine (CRO–ELM) algorithm in a real problem of global solar radiation prediction. The work considers different meteorological data from the radiometric station at Murcia (southern Spain), both from measurements, radiosondes and meteorological models, and fully describes the hybrid CRO–ELM to solve the prediction of the daily global solar radiation from these data. The algorithm is designed in such a way that the ELM solves the prediction problem, whereas the CRO evolves the weights of the neural network, in order to improve the solutions obtained. The experiments carried out have shown that the CRO–ELM approach is able to obtain an accurate prediction of the daily global radiation, better than the classical ELM, and the Support Vector Regression algorithm.
doi_str_mv 10.1016/j.solener.2014.04.009
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1535662941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0038092X14001947</els_id><sourcerecordid>3334835581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-e4babf2138011245b4c57e1d5ea825b42618fd7de680e6b2809d9e12fd0eb4313</originalsourceid><addsrcrecordid>eNqFUdtqGzEQFSWBOmk-ISAofVxnRnt_KsW5gksgtNA3MSvNJjLr3Y20CXGf8g_9w3xJ5dr0NTAwR3Au6IwQpwhzBCzOVvMwdNyznyvAbA5xoP4gZpiVmKDKywMxA0irBGr166M4CmEFgCVW5Uy8nJPrNvK-GxrqZPQhLz1ZR5Mbejl6ts78gw0FtjICkg-bxjsrF4OPkjvmNsjbcXJr93unenv9Iy9eJs9rlksm37v-Xn4n8-B6ljSOfoj4kzhsqQt8st_H4uflxY_FdbK8vbpZfFsmJi3KKeGsoaZVmFaAqLK8yUxeMtqcqVLxpQqsWltaLirgolEV1LZmVK0FbrIU02PxeecbYx-fOEx6NTz5PkZqzNO8KFSdbVn5jmX8EILnVo_erclvNILelqxXel-y3pasIQ7UUfdl707BUNd66o0L_8WqyuMNMhV5X3c8jl99dtElGMe9ifV6NpO2g3sn6S9-jJcq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1535662941</pqid></control><display><type>article</type><title>Daily global solar radiation prediction based on a hybrid Coral Reefs Optimization – Extreme Learning Machine approach</title><source>ScienceDirect Journals</source><creator>Salcedo-Sanz, S. ; Casanova-Mateo, C. ; Pastor-Sánchez, A. ; Sánchez-Girón, M.</creator><creatorcontrib>Salcedo-Sanz, S. ; Casanova-Mateo, C. ; Pastor-Sánchez, A. ; Sánchez-Girón, M.</creatorcontrib><description>•This paper presents a hybrid CRO–ELM algorithm for solar radiation prediction.•Novel predictive meteorological variables are considered in this problem.•The CRO is a novel meta-heuristic search algorithm based on simulation of Coral Reefs.•The Extreme Learning Machine (ELM) is a state of the art method for training neural networks.•The proposed hybrid approach has shown excellent results in real data in Spain. This paper discusses the performance of a novel Coral Reefs Optimization – Extreme Learning Machine (CRO–ELM) algorithm in a real problem of global solar radiation prediction. The work considers different meteorological data from the radiometric station at Murcia (southern Spain), both from measurements, radiosondes and meteorological models, and fully describes the hybrid CRO–ELM to solve the prediction of the daily global solar radiation from these data. The algorithm is designed in such a way that the ELM solves the prediction problem, whereas the CRO evolves the weights of the neural network, in order to improve the solutions obtained. The experiments carried out have shown that the CRO–ELM approach is able to obtain an accurate prediction of the daily global radiation, better than the classical ELM, and the Support Vector Regression algorithm.</description><identifier>ISSN: 0038-092X</identifier><identifier>EISSN: 1471-1257</identifier><identifier>DOI: 10.1016/j.solener.2014.04.009</identifier><identifier>CODEN: SRENA4</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Coral reefs ; Coral Reefs Optimization algorithm ; Daily global solar radiation prediction ; Energy ; Exact sciences and technology ; Extreme Learning Machines ; Measurement ; Natural energy ; Optimization algorithms ; Radiation ; Regression analysis ; Solar energy ; Solar radiation</subject><ispartof>Solar energy, 2014-07, Vol.105, p.91-98</ispartof><rights>2014 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Pergamon Press Inc. Jul 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-e4babf2138011245b4c57e1d5ea825b42618fd7de680e6b2809d9e12fd0eb4313</citedby><cites>FETCH-LOGICAL-c367t-e4babf2138011245b4c57e1d5ea825b42618fd7de680e6b2809d9e12fd0eb4313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28547142$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Salcedo-Sanz, S.</creatorcontrib><creatorcontrib>Casanova-Mateo, C.</creatorcontrib><creatorcontrib>Pastor-Sánchez, A.</creatorcontrib><creatorcontrib>Sánchez-Girón, M.</creatorcontrib><title>Daily global solar radiation prediction based on a hybrid Coral Reefs Optimization – Extreme Learning Machine approach</title><title>Solar energy</title><description>•This paper presents a hybrid CRO–ELM algorithm for solar radiation prediction.•Novel predictive meteorological variables are considered in this problem.•The CRO is a novel meta-heuristic search algorithm based on simulation of Coral Reefs.•The Extreme Learning Machine (ELM) is a state of the art method for training neural networks.•The proposed hybrid approach has shown excellent results in real data in Spain. This paper discusses the performance of a novel Coral Reefs Optimization – Extreme Learning Machine (CRO–ELM) algorithm in a real problem of global solar radiation prediction. The work considers different meteorological data from the radiometric station at Murcia (southern Spain), both from measurements, radiosondes and meteorological models, and fully describes the hybrid CRO–ELM to solve the prediction of the daily global solar radiation from these data. The algorithm is designed in such a way that the ELM solves the prediction problem, whereas the CRO evolves the weights of the neural network, in order to improve the solutions obtained. The experiments carried out have shown that the CRO–ELM approach is able to obtain an accurate prediction of the daily global radiation, better than the classical ELM, and the Support Vector Regression algorithm.</description><subject>Applied sciences</subject><subject>Coral reefs</subject><subject>Coral Reefs Optimization algorithm</subject><subject>Daily global solar radiation prediction</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Extreme Learning Machines</subject><subject>Measurement</subject><subject>Natural energy</subject><subject>Optimization algorithms</subject><subject>Radiation</subject><subject>Regression analysis</subject><subject>Solar energy</subject><subject>Solar radiation</subject><issn>0038-092X</issn><issn>1471-1257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFUdtqGzEQFSWBOmk-ISAofVxnRnt_KsW5gksgtNA3MSvNJjLr3Y20CXGf8g_9w3xJ5dr0NTAwR3Au6IwQpwhzBCzOVvMwdNyznyvAbA5xoP4gZpiVmKDKywMxA0irBGr166M4CmEFgCVW5Uy8nJPrNvK-GxrqZPQhLz1ZR5Mbejl6ts78gw0FtjICkg-bxjsrF4OPkjvmNsjbcXJr93unenv9Iy9eJs9rlksm37v-Xn4n8-B6ljSOfoj4kzhsqQt8st_H4uflxY_FdbK8vbpZfFsmJi3KKeGsoaZVmFaAqLK8yUxeMtqcqVLxpQqsWltaLirgolEV1LZmVK0FbrIU02PxeecbYx-fOEx6NTz5PkZqzNO8KFSdbVn5jmX8EILnVo_erclvNILelqxXel-y3pasIQ7UUfdl707BUNd66o0L_8WqyuMNMhV5X3c8jl99dtElGMe9ifV6NpO2g3sn6S9-jJcq</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Salcedo-Sanz, S.</creator><creator>Casanova-Mateo, C.</creator><creator>Pastor-Sánchez, A.</creator><creator>Sánchez-Girón, M.</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Pergamon Press Inc</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20140701</creationdate><title>Daily global solar radiation prediction based on a hybrid Coral Reefs Optimization – Extreme Learning Machine approach</title><author>Salcedo-Sanz, S. ; Casanova-Mateo, C. ; Pastor-Sánchez, A. ; Sánchez-Girón, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-e4babf2138011245b4c57e1d5ea825b42618fd7de680e6b2809d9e12fd0eb4313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Coral reefs</topic><topic>Coral Reefs Optimization algorithm</topic><topic>Daily global solar radiation prediction</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Extreme Learning Machines</topic><topic>Measurement</topic><topic>Natural energy</topic><topic>Optimization algorithms</topic><topic>Radiation</topic><topic>Regression analysis</topic><topic>Solar energy</topic><topic>Solar radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salcedo-Sanz, S.</creatorcontrib><creatorcontrib>Casanova-Mateo, C.</creatorcontrib><creatorcontrib>Pastor-Sánchez, A.</creatorcontrib><creatorcontrib>Sánchez-Girón, M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salcedo-Sanz, S.</au><au>Casanova-Mateo, C.</au><au>Pastor-Sánchez, A.</au><au>Sánchez-Girón, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Daily global solar radiation prediction based on a hybrid Coral Reefs Optimization – Extreme Learning Machine approach</atitle><jtitle>Solar energy</jtitle><date>2014-07-01</date><risdate>2014</risdate><volume>105</volume><spage>91</spage><epage>98</epage><pages>91-98</pages><issn>0038-092X</issn><eissn>1471-1257</eissn><coden>SRENA4</coden><abstract>•This paper presents a hybrid CRO–ELM algorithm for solar radiation prediction.•Novel predictive meteorological variables are considered in this problem.•The CRO is a novel meta-heuristic search algorithm based on simulation of Coral Reefs.•The Extreme Learning Machine (ELM) is a state of the art method for training neural networks.•The proposed hybrid approach has shown excellent results in real data in Spain. This paper discusses the performance of a novel Coral Reefs Optimization – Extreme Learning Machine (CRO–ELM) algorithm in a real problem of global solar radiation prediction. The work considers different meteorological data from the radiometric station at Murcia (southern Spain), both from measurements, radiosondes and meteorological models, and fully describes the hybrid CRO–ELM to solve the prediction of the daily global solar radiation from these data. The algorithm is designed in such a way that the ELM solves the prediction problem, whereas the CRO evolves the weights of the neural network, in order to improve the solutions obtained. The experiments carried out have shown that the CRO–ELM approach is able to obtain an accurate prediction of the daily global radiation, better than the classical ELM, and the Support Vector Regression algorithm.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.solener.2014.04.009</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0038-092X
ispartof Solar energy, 2014-07, Vol.105, p.91-98
issn 0038-092X
1471-1257
language eng
recordid cdi_proquest_journals_1535662941
source ScienceDirect Journals
subjects Applied sciences
Coral reefs
Coral Reefs Optimization algorithm
Daily global solar radiation prediction
Energy
Exact sciences and technology
Extreme Learning Machines
Measurement
Natural energy
Optimization algorithms
Radiation
Regression analysis
Solar energy
Solar radiation
title Daily global solar radiation prediction based on a hybrid Coral Reefs Optimization – Extreme Learning Machine approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A44%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Daily%20global%20solar%20radiation%20prediction%20based%20on%20a%20hybrid%20Coral%20Reefs%20Optimization%20%E2%80%93%20Extreme%20Learning%20Machine%20approach&rft.jtitle=Solar%20energy&rft.au=Salcedo-Sanz,%20S.&rft.date=2014-07-01&rft.volume=105&rft.spage=91&rft.epage=98&rft.pages=91-98&rft.issn=0038-092X&rft.eissn=1471-1257&rft.coden=SRENA4&rft_id=info:doi/10.1016/j.solener.2014.04.009&rft_dat=%3Cproquest_cross%3E3334835581%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-e4babf2138011245b4c57e1d5ea825b42618fd7de680e6b2809d9e12fd0eb4313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1535662941&rft_id=info:pmid/&rfr_iscdi=true