Loading…

High throughput screening of rooting depth in rice using buried herbicide

Root research requires high throughput phenotyping methods that provide meaningful information on root depth if the full potential of the genomic revolution is to be translated into strategies that maximise the capture of water deep in soils by crops. A very simple, low cost method of assessing root...

Full description

Saved in:
Bibliographic Details
Published in:Annals of applied biology 2014-07, Vol.165 (1), p.96-107
Main Authors: Al‐Shugeairy, Z, Islam, Md.S, Shrestha, R, Al‐Ogaidi, F, Norton, G.J, Price, A.H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Root research requires high throughput phenotyping methods that provide meaningful information on root depth if the full potential of the genomic revolution is to be translated into strategies that maximise the capture of water deep in soils by crops. A very simple, low cost method of assessing root depth of seedlings using a layer of herbicide (TRIK or diuron) buried 25 or 30 cm deep in soil‐filled boxes of varying size is described that is suitable for screening hundreds or thousands of rice accessions in controlled environment conditions. Variation in cultivar sensitivity to the herbicide when injected into pots was detected but considered small in relation to the variation detected when the herbicide was buried. Using 32 rice cultivars previously characterised for root traits in rhizotron and hydroponic systems, 80% of variation in herbicide score at 35 days was explained by cultivar and herbicide score correlated strongly with rooting depth traits. Using 139 genotypes of the Bala × Azucena mapping population, heritability for herbicide symptoms reached 55% and quantitative trait loci were detected which match those previously reported in this population. In repeated experiments using different soils, the method did not always perform to its maximum potential (in terms of speed of symptom development or discrimination between cultivars). This was not due to degradation or reduced bio‐availability of the herbicide in the soil but is believed to be due to the soil water content and water release characteristics as it relates to plant water use. Therefore, when using this technique, thorough preliminary experiments to determine the best water application regime for the particular combination of soil and environmental conditions are required. The method should be applicable to seedling stage screening of rice and other crops.
ISSN:0003-4746
1744-7348
DOI:10.1111/aab.12118