Loading…

The Importance of Microtopography and Nurse Canopy for Successful Restoration Planting of the Slow-Growing Conifer Pilgerodendron uviferum

Recent studies have shown that, owing to a lack of seed trees, the natural rate of recovery of fire-disturbed bog forests previously dominated by the endemic and endangered conifer Pilgerodendron uviferum (D. Don) Florin is extremely slow. Hence, increasing the number of seed trees in the landscape...

Full description

Saved in:
Bibliographic Details
Published in:Forests 2013-03, Vol.4 (1), p.85-103
Main Authors: Bannister, Jan, Coopman, Rafael, Donoso, Pablo, Bauhus, Jürgen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recent studies have shown that, owing to a lack of seed trees, the natural rate of recovery of fire-disturbed bog forests previously dominated by the endemic and endangered conifer Pilgerodendron uviferum (D. Don) Florin is extremely slow. Hence, increasing the number of seed trees in the landscape through restoration planting could remove the principal biotic filter, limiting recovery of these forests. Here, we analyzed how the success of restoration plantings may be improved through the choice or manipulation of microsites in P. uviferum forests on Chiloé Island in North Patagonia. For this purpose, we manipulated microtopography in water-logged sites in bogs (mounds, flat terrain, mineral soil) and changed canopy conditions (gaps, semi-open, closed canopy) in upland sites with better drainage. In bogs, there was no significant effect of microtopography on growth and survival of P. uviferum plantings. However, fluorescence measurements indicated lower stress in seedlings established on mounds. Seedlings in upland areas established beneath a nurse canopy had lower mortality and higher relative shoot growth, foliar nutrients, photosynthetic light use efficiency and chlorophyll fluorescence values than those planted in the open. This indicates that seedlings of the slow growing P. uviferum can tolerate extremely wet conditions, yet suffer from stress when grown in the open. Here, the removal of canopy appeared to have also removed or reduced mycorrhizal networks for seedlings, leading to poorer nutrition and growth. Based on these results, recommendations for restoration plantings in highly degraded P. uviferum forests are presented.
ISSN:1999-4907
1999-4907
DOI:10.3390/f4010085