Loading…

Finding the Optimal Clusters from Discrete Data using Evolutionary Clustering Algorithm

To find the natural number of clusters in a dataset has been a difficult issue in many clustering algorithms. It is complex to determine the desired number of clusters. Even if a hierarchical tree of clusters is given, it is still hard to determine the cut points. The proposed algorithm is modified...

Full description

Saved in:
Bibliographic Details
Published in:International journal of advanced research in computer science 2014-04, Vol.5 (4)
Main Authors: Chaudhari, P M, Dharaskar, R V, Thakare, V M
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 4
container_start_page
container_title International journal of advanced research in computer science
container_volume 5
creator Chaudhari, P M
Dharaskar, R V
Thakare, V M
description To find the natural number of clusters in a dataset has been a difficult issue in many clustering algorithms. It is complex to determine the desired number of clusters. Even if a hierarchical tree of clusters is given, it is still hard to determine the cut points. The proposed algorithm is modified to find the optimal number of clusters. It is varied in several ways. It allows a variable number of clusters in the chromosomes. It introduces split and merge mutation and new crossover operations. In addition, the fitness function is enhanced to give a fair evaluation. The experimental results illustrate the proposed algorithm can successfully find the correct number of clusters in many datasets.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_1539500202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3347358731</sourcerecordid><originalsourceid>FETCH-proquest_journals_15395002023</originalsourceid><addsrcrecordid>eNqNyk8LgjAYBvARBEn5HQadhaWp7Bj-oVuXoKOMmjqZm-19F_TtU6h7z-WB5_mtSMB4nkVpxvMNCQEGNifhPDuygNxqZR7KdBR7SS8TqlFoWmgPKB3Q1tmRlgruTqKkpUBBPSy6elntUVkj3PvHl_2kO-sU9uOOrFuhQYbf3pJ9XV2LczQ5-_QSsBmsd2a-mkOa8JSxmMXJf-oDiBpB9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1539500202</pqid></control><display><type>article</type><title>Finding the Optimal Clusters from Discrete Data using Evolutionary Clustering Algorithm</title><source>Publicly Available Content Database</source><creator>Chaudhari, P M ; Dharaskar, R V ; Thakare, V M</creator><creatorcontrib>Chaudhari, P M ; Dharaskar, R V ; Thakare, V M</creatorcontrib><description>To find the natural number of clusters in a dataset has been a difficult issue in many clustering algorithms. It is complex to determine the desired number of clusters. Even if a hierarchical tree of clusters is given, it is still hard to determine the cut points. The proposed algorithm is modified to find the optimal number of clusters. It is varied in several ways. It allows a variable number of clusters in the chromosomes. It introduces split and merge mutation and new crossover operations. In addition, the fitness function is enhanced to give a fair evaluation. The experimental results illustrate the proposed algorithm can successfully find the correct number of clusters in many datasets.</description><identifier>EISSN: 0976-5697</identifier><language>eng</language><publisher>Udaipur: International Journal of Advanced Research in Computer Science</publisher><subject>Algorithms ; Clustering ; Computer science ; Data mining ; Data warehouses ; Datasets ; Euclidean space</subject><ispartof>International journal of advanced research in computer science, 2014-04, Vol.5 (4)</ispartof><rights>Copyright International Journal of Advanced Research in Computer Science Apr 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1539500202?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Chaudhari, P M</creatorcontrib><creatorcontrib>Dharaskar, R V</creatorcontrib><creatorcontrib>Thakare, V M</creatorcontrib><title>Finding the Optimal Clusters from Discrete Data using Evolutionary Clustering Algorithm</title><title>International journal of advanced research in computer science</title><description>To find the natural number of clusters in a dataset has been a difficult issue in many clustering algorithms. It is complex to determine the desired number of clusters. Even if a hierarchical tree of clusters is given, it is still hard to determine the cut points. The proposed algorithm is modified to find the optimal number of clusters. It is varied in several ways. It allows a variable number of clusters in the chromosomes. It introduces split and merge mutation and new crossover operations. In addition, the fitness function is enhanced to give a fair evaluation. The experimental results illustrate the proposed algorithm can successfully find the correct number of clusters in many datasets.</description><subject>Algorithms</subject><subject>Clustering</subject><subject>Computer science</subject><subject>Data mining</subject><subject>Data warehouses</subject><subject>Datasets</subject><subject>Euclidean space</subject><issn>0976-5697</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyk8LgjAYBvARBEn5HQadhaWp7Bj-oVuXoKOMmjqZm-19F_TtU6h7z-WB5_mtSMB4nkVpxvMNCQEGNifhPDuygNxqZR7KdBR7SS8TqlFoWmgPKB3Q1tmRlgruTqKkpUBBPSy6elntUVkj3PvHl_2kO-sU9uOOrFuhQYbf3pJ9XV2LczQ5-_QSsBmsd2a-mkOa8JSxmMXJf-oDiBpB9Q</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Chaudhari, P M</creator><creator>Dharaskar, R V</creator><creator>Thakare, V M</creator><general>International Journal of Advanced Research in Computer Science</general><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20140401</creationdate><title>Finding the Optimal Clusters from Discrete Data using Evolutionary Clustering Algorithm</title><author>Chaudhari, P M ; Dharaskar, R V ; Thakare, V M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_15395002023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Clustering</topic><topic>Computer science</topic><topic>Data mining</topic><topic>Data warehouses</topic><topic>Datasets</topic><topic>Euclidean space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chaudhari, P M</creatorcontrib><creatorcontrib>Dharaskar, R V</creatorcontrib><creatorcontrib>Thakare, V M</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of advanced research in computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chaudhari, P M</au><au>Dharaskar, R V</au><au>Thakare, V M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finding the Optimal Clusters from Discrete Data using Evolutionary Clustering Algorithm</atitle><jtitle>International journal of advanced research in computer science</jtitle><date>2014-04-01</date><risdate>2014</risdate><volume>5</volume><issue>4</issue><eissn>0976-5697</eissn><abstract>To find the natural number of clusters in a dataset has been a difficult issue in many clustering algorithms. It is complex to determine the desired number of clusters. Even if a hierarchical tree of clusters is given, it is still hard to determine the cut points. The proposed algorithm is modified to find the optimal number of clusters. It is varied in several ways. It allows a variable number of clusters in the chromosomes. It introduces split and merge mutation and new crossover operations. In addition, the fitness function is enhanced to give a fair evaluation. The experimental results illustrate the proposed algorithm can successfully find the correct number of clusters in many datasets.</abstract><cop>Udaipur</cop><pub>International Journal of Advanced Research in Computer Science</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 0976-5697
ispartof International journal of advanced research in computer science, 2014-04, Vol.5 (4)
issn 0976-5697
language eng
recordid cdi_proquest_journals_1539500202
source Publicly Available Content Database
subjects Algorithms
Clustering
Computer science
Data mining
Data warehouses
Datasets
Euclidean space
title Finding the Optimal Clusters from Discrete Data using Evolutionary Clustering Algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T03%3A02%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finding%20the%20Optimal%20Clusters%20from%20Discrete%20Data%20using%20Evolutionary%20Clustering%20Algorithm&rft.jtitle=International%20journal%20of%20advanced%20research%20in%20computer%20science&rft.au=Chaudhari,%20P%20M&rft.date=2014-04-01&rft.volume=5&rft.issue=4&rft.eissn=0976-5697&rft_id=info:doi/&rft_dat=%3Cproquest%3E3347358731%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_15395002023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1539500202&rft_id=info:pmid/&rfr_iscdi=true