Loading…

Response to Comment on “Quantifying long-term scientific impact”

Wang, Mei, and Hicks claim that they observed large mean prediction errors when using our model. We find that their claims are a simple consequence of overfitting, which can be avoided by standard regularization methods. Here, we show that our model provides an effective means to identify papers tha...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 2014-07, Vol.345 (6193), p.149-149
Main Authors: Wang, Dashun, Song, Chaoming, Shen, Hua-Wei, Barabási, Albert-László
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c269t-75a3a723629caaace54eeb9f46eb1b21e4ad8ca28cea762681b7338278e7b9203
cites cdi_FETCH-LOGICAL-c269t-75a3a723629caaace54eeb9f46eb1b21e4ad8ca28cea762681b7338278e7b9203
container_end_page 149
container_issue 6193
container_start_page 149
container_title Science (American Association for the Advancement of Science)
container_volume 345
creator Wang, Dashun
Song, Chaoming
Shen, Hua-Wei
Barabási, Albert-László
description Wang, Mei, and Hicks claim that they observed large mean prediction errors when using our model. We find that their claims are a simple consequence of overfitting, which can be avoided by standard regularization methods. Here, we show that our model provides an effective means to identify papers that may be subject to overfitting, and the model, with or without prior treatment, outperforms the proposed naïve approach.
doi_str_mv 10.1126/science.1248961
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1544396995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3369066771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c269t-75a3a723629caaace54eeb9f46eb1b21e4ad8ca28cea762681b7338278e7b9203</originalsourceid><addsrcrecordid>eNotkM1KAzEUhYMoWKtrtwHX0-ZnJj9LqVqFgii6Dpl4p0zpJGOSLrrrg-jL9Umc2q4unHs4h_MhdEvJhFImpsm14B1MKCuVFvQMjSjRVaEZ4edoRAgXhSKyukRXKa0IGX6aj9DDO6Q--AQ4BzwLXQc-4-DxfvfztrE-t8229Uu8Dn5ZZIgd_q8Z5Nbhtuuty_vd7zW6aOw6wc3pjtHn0-PH7LlYvM5fZveLwjGhcyEry61kXDDtrLUOqhKg1k0poKY1o1DaL-UsUw6sFEwoWkvOFZMKZH3YMUZ3x9w-hu8NpGxWYRP9UGloVZZcC62rwTU9ulwMKUVoTB_bzsatocQcUJkTKnNCxf8AKitf7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1544396995</pqid></control><display><type>article</type><title>Response to Comment on “Quantifying long-term scientific impact”</title><source>American Association for the Advancement of Science</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Alma/SFX Local Collection</source><creator>Wang, Dashun ; Song, Chaoming ; Shen, Hua-Wei ; Barabási, Albert-László</creator><creatorcontrib>Wang, Dashun ; Song, Chaoming ; Shen, Hua-Wei ; Barabási, Albert-László</creatorcontrib><description>Wang, Mei, and Hicks claim that they observed large mean prediction errors when using our model. We find that their claims are a simple consequence of overfitting, which can be avoided by standard regularization methods. Here, we show that our model provides an effective means to identify papers that may be subject to overfitting, and the model, with or without prior treatment, outperforms the proposed naïve approach.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1248961</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington: The American Association for the Advancement of Science</publisher><ispartof>Science (American Association for the Advancement of Science), 2014-07, Vol.345 (6193), p.149-149</ispartof><rights>Copyright © 2014, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c269t-75a3a723629caaace54eeb9f46eb1b21e4ad8ca28cea762681b7338278e7b9203</citedby><cites>FETCH-LOGICAL-c269t-75a3a723629caaace54eeb9f46eb1b21e4ad8ca28cea762681b7338278e7b9203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,2871,2872,27905,27906</link.rule.ids></links><search><creatorcontrib>Wang, Dashun</creatorcontrib><creatorcontrib>Song, Chaoming</creatorcontrib><creatorcontrib>Shen, Hua-Wei</creatorcontrib><creatorcontrib>Barabási, Albert-László</creatorcontrib><title>Response to Comment on “Quantifying long-term scientific impact”</title><title>Science (American Association for the Advancement of Science)</title><description>Wang, Mei, and Hicks claim that they observed large mean prediction errors when using our model. We find that their claims are a simple consequence of overfitting, which can be avoided by standard regularization methods. Here, we show that our model provides an effective means to identify papers that may be subject to overfitting, and the model, with or without prior treatment, outperforms the proposed naïve approach.</description><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNotkM1KAzEUhYMoWKtrtwHX0-ZnJj9LqVqFgii6Dpl4p0zpJGOSLrrrg-jL9Umc2q4unHs4h_MhdEvJhFImpsm14B1MKCuVFvQMjSjRVaEZ4edoRAgXhSKyukRXKa0IGX6aj9DDO6Q--AQ4BzwLXQc-4-DxfvfztrE-t8229Uu8Dn5ZZIgd_q8Z5Nbhtuuty_vd7zW6aOw6wc3pjtHn0-PH7LlYvM5fZveLwjGhcyEry61kXDDtrLUOqhKg1k0poKY1o1DaL-UsUw6sFEwoWkvOFZMKZH3YMUZ3x9w-hu8NpGxWYRP9UGloVZZcC62rwTU9ulwMKUVoTB_bzsatocQcUJkTKnNCxf8AKitf7Q</recordid><startdate>20140711</startdate><enddate>20140711</enddate><creator>Wang, Dashun</creator><creator>Song, Chaoming</creator><creator>Shen, Hua-Wei</creator><creator>Barabási, Albert-László</creator><general>The American Association for the Advancement of Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20140711</creationdate><title>Response to Comment on “Quantifying long-term scientific impact”</title><author>Wang, Dashun ; Song, Chaoming ; Shen, Hua-Wei ; Barabási, Albert-László</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c269t-75a3a723629caaace54eeb9f46eb1b21e4ad8ca28cea762681b7338278e7b9203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Dashun</creatorcontrib><creatorcontrib>Song, Chaoming</creatorcontrib><creatorcontrib>Shen, Hua-Wei</creatorcontrib><creatorcontrib>Barabási, Albert-László</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Dashun</au><au>Song, Chaoming</au><au>Shen, Hua-Wei</au><au>Barabási, Albert-László</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Response to Comment on “Quantifying long-term scientific impact”</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2014-07-11</date><risdate>2014</risdate><volume>345</volume><issue>6193</issue><spage>149</spage><epage>149</epage><pages>149-149</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Wang, Mei, and Hicks claim that they observed large mean prediction errors when using our model. We find that their claims are a simple consequence of overfitting, which can be avoided by standard regularization methods. Here, we show that our model provides an effective means to identify papers that may be subject to overfitting, and the model, with or without prior treatment, outperforms the proposed naïve approach.</abstract><cop>Washington</cop><pub>The American Association for the Advancement of Science</pub><doi>10.1126/science.1248961</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2014-07, Vol.345 (6193), p.149-149
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_journals_1544396995
source American Association for the Advancement of Science; JSTOR Archival Journals and Primary Sources Collection; Alma/SFX Local Collection
title Response to Comment on “Quantifying long-term scientific impact”
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T18%3A19%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Response%20to%20Comment%20on%20%E2%80%9CQuantifying%20long-term%20scientific%20impact%E2%80%9D&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Wang,%20Dashun&rft.date=2014-07-11&rft.volume=345&rft.issue=6193&rft.spage=149&rft.epage=149&rft.pages=149-149&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1248961&rft_dat=%3Cproquest_cross%3E3369066771%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c269t-75a3a723629caaace54eeb9f46eb1b21e4ad8ca28cea762681b7338278e7b9203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1544396995&rft_id=info:pmid/&rfr_iscdi=true