Loading…

Cloning, expression, molecular modelling and docking analysis of glutathione transferase from Saccharum officinarum

Sugarcane yield and quality are affected by a number of biotic and abiotic stresses. In response to such stresses, plants may increase the activities of some enzymes such as glutathione transferase (GST), which are involved in the detoxification of xenobiotics. Thus, a sugarcane GST was modelled and...

Full description

Saved in:
Bibliographic Details
Published in:Annals of applied biology 2011-09, Vol.159 (2), p.267-280
Main Authors: Ghelfi, A, Gaziola, S.A, Cia, M.C, Chabregas, S.M, Falco, M.C, Kuser‐Falcão, P.R, Azevedo, R.A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Sugarcane yield and quality are affected by a number of biotic and abiotic stresses. In response to such stresses, plants may increase the activities of some enzymes such as glutathione transferase (GST), which are involved in the detoxification of xenobiotics. Thus, a sugarcane GST was modelled and molecular docked using the program LIGIN to investigate the contributions of the active site residues towards the binding of reduced glutathione (GSH) and 1‐chloro‐2,4‐dinitrobenzene (CDNB). As a result, W13 and I119 were identified as key residues for the specificity of sugarcane GSTF1 (SoGSTF1) towards CDNB. To obtain a better understanding of the catalytic specificity of sugarcane GST (SoGSTF1), two mutants were designed, W13L and I119F. Tertiary structure models and the same docking procedure were performed to explain the interactions between sugarcane GSTs with GSH and CDNB. An electron‐sharing network for GSH interaction was also proposed. The SoGSTF1 and the mutated gene constructions were cloned and expressed in Escherichia coli and the expressed protein purified. Kinetic analyses revealed different Km values not only for CDNB, but also for GSH. The Km values were 0.2, 1.3 and 0.3 mM for GSH, and 0.9, 1.2 and 0.5 mM for CDNB, for the wild type, W13L mutant and I119F mutant, respectively. The Vmax values were 297.6, 224.5 and 171.8 µmol min−1 mg−1 protein for GSH, and 372.3, 170.6 and 160.4 µmol min−1 mg−1 protein for CDNB.
ISSN:0003-4746
1744-7348
DOI:10.1111/j.1744-7348.2011.00491.x