Loading…

Combining Priors, Appearance, and Context for Road Detection

Detecting the free road surface ahead of a moving vehicle is an important research topic in different areas of computer vision, such as autonomous driving or car collision warning. Current vision-based road detection methods are usually based solely on low-level features. Furthermore, they generally...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on intelligent transportation systems 2014-06, Vol.15 (3), p.1168-1178
Main Authors: Alvarez, Jose M., Lopez, Antonio M., Gevers, Theo, Lumbreras, Felipe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c402t-66a1c9558492800d58e084b31465f5834c4e48d9e0dafcfb93d69588ce290aeb3
cites cdi_FETCH-LOGICAL-c402t-66a1c9558492800d58e084b31465f5834c4e48d9e0dafcfb93d69588ce290aeb3
container_end_page 1178
container_issue 3
container_start_page 1168
container_title IEEE transactions on intelligent transportation systems
container_volume 15
creator Alvarez, Jose M.
Lopez, Antonio M.
Gevers, Theo
Lumbreras, Felipe
description Detecting the free road surface ahead of a moving vehicle is an important research topic in different areas of computer vision, such as autonomous driving or car collision warning. Current vision-based road detection methods are usually based solely on low-level features. Furthermore, they generally assume structured roads, road homogeneity, and uniform lighting conditions, constraining their applicability in real-world scenarios. In this paper, road priors and contextual information are introduced for road detection. First, we propose an algorithm to estimate road priors online using geographical information, providing relevant initial information about the road location. Then, contextual cues, including horizon lines, vanishing points, lane markings, 3-D scene layout, and road geometry, are used in addition to low-level cues derived from the appearance of roads. Finally, a generative model is used to combine these cues and priors, leading to a road detection method that is, to a large degree, robust to varying imaging conditions, road types, and scenarios.
doi_str_mv 10.1109/TITS.2013.2295427
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1546006877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6719504</ieee_id><sourcerecordid>3377849471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-66a1c9558492800d58e084b31465f5834c4e48d9e0dafcfb93d69588ce290aeb3</originalsourceid><addsrcrecordid>eNo9kN9LwzAQx4MoOKd_gPgS8HWdlzRJE_BldP4YDBSdzyFNr9Lhmpp2oP-9LRs-3XF8vnfHh5BrBnPGwNxtVpv3OQeWzjk3UvDshEyYlDoBYOp07LlIDEg4Jxddtx2mQjI2Ifd52BV1Uzef9DXWIXYzumhbdNE1HmfUNSXNQ9PjT0-rEOlbcCVdYo--r0NzSc4q99Xh1bFOycfjwyZ_TtYvT6t8sU68AN4nSjnmzfCMMFwDlFIjaFGkTChZSZ0KL1Do0iCUrvJVYdJSGam1R27AYZFOye1hbxvD9x673m7DPjbDScukUABKZ9lAsQPlY-i6iJVtY71z8dcysKMkO0qyoyR7lDRkbg6ZGhH_eZUxI0Gkf5k-YQc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1546006877</pqid></control><display><type>article</type><title>Combining Priors, Appearance, and Context for Road Detection</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Alvarez, Jose M. ; Lopez, Antonio M. ; Gevers, Theo ; Lumbreras, Felipe</creator><creatorcontrib>Alvarez, Jose M. ; Lopez, Antonio M. ; Gevers, Theo ; Lumbreras, Felipe</creatorcontrib><description>Detecting the free road surface ahead of a moving vehicle is an important research topic in different areas of computer vision, such as autonomous driving or car collision warning. Current vision-based road detection methods are usually based solely on low-level features. Furthermore, they generally assume structured roads, road homogeneity, and uniform lighting conditions, constraining their applicability in real-world scenarios. In this paper, road priors and contextual information are introduced for road detection. First, we propose an algorithm to estimate road priors online using geographical information, providing relevant initial information about the road location. Then, contextual cues, including horizon lines, vanishing points, lane markings, 3-D scene layout, and road geometry, are used in addition to low-level cues derived from the appearance of roads. Finally, a generative model is used to combine these cues and priors, leading to a road detection method that is, to a large degree, robust to varying imaging conditions, road types, and scenarios.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2013.2295427</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>3-D scene layout ; Cameras ; Global Positioning System ; Illuminant invariance ; Image color analysis ; lane markings ; Lighting ; road detection ; road prior ; road scene understanding ; Roads ; Roads &amp; highways ; Shape ; vanishing point ; Vehicles</subject><ispartof>IEEE transactions on intelligent transportation systems, 2014-06, Vol.15 (3), p.1168-1178</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-66a1c9558492800d58e084b31465f5834c4e48d9e0dafcfb93d69588ce290aeb3</citedby><cites>FETCH-LOGICAL-c402t-66a1c9558492800d58e084b31465f5834c4e48d9e0dafcfb93d69588ce290aeb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6719504$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Alvarez, Jose M.</creatorcontrib><creatorcontrib>Lopez, Antonio M.</creatorcontrib><creatorcontrib>Gevers, Theo</creatorcontrib><creatorcontrib>Lumbreras, Felipe</creatorcontrib><title>Combining Priors, Appearance, and Context for Road Detection</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Detecting the free road surface ahead of a moving vehicle is an important research topic in different areas of computer vision, such as autonomous driving or car collision warning. Current vision-based road detection methods are usually based solely on low-level features. Furthermore, they generally assume structured roads, road homogeneity, and uniform lighting conditions, constraining their applicability in real-world scenarios. In this paper, road priors and contextual information are introduced for road detection. First, we propose an algorithm to estimate road priors online using geographical information, providing relevant initial information about the road location. Then, contextual cues, including horizon lines, vanishing points, lane markings, 3-D scene layout, and road geometry, are used in addition to low-level cues derived from the appearance of roads. Finally, a generative model is used to combine these cues and priors, leading to a road detection method that is, to a large degree, robust to varying imaging conditions, road types, and scenarios.</description><subject>3-D scene layout</subject><subject>Cameras</subject><subject>Global Positioning System</subject><subject>Illuminant invariance</subject><subject>Image color analysis</subject><subject>lane markings</subject><subject>Lighting</subject><subject>road detection</subject><subject>road prior</subject><subject>road scene understanding</subject><subject>Roads</subject><subject>Roads &amp; highways</subject><subject>Shape</subject><subject>vanishing point</subject><subject>Vehicles</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kN9LwzAQx4MoOKd_gPgS8HWdlzRJE_BldP4YDBSdzyFNr9Lhmpp2oP-9LRs-3XF8vnfHh5BrBnPGwNxtVpv3OQeWzjk3UvDshEyYlDoBYOp07LlIDEg4Jxddtx2mQjI2Ifd52BV1Uzef9DXWIXYzumhbdNE1HmfUNSXNQ9PjT0-rEOlbcCVdYo--r0NzSc4q99Xh1bFOycfjwyZ_TtYvT6t8sU68AN4nSjnmzfCMMFwDlFIjaFGkTChZSZ0KL1Do0iCUrvJVYdJSGam1R27AYZFOye1hbxvD9x673m7DPjbDScukUABKZ9lAsQPlY-i6iJVtY71z8dcysKMkO0qyoyR7lDRkbg6ZGhH_eZUxI0Gkf5k-YQc</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Alvarez, Jose M.</creator><creator>Lopez, Antonio M.</creator><creator>Gevers, Theo</creator><creator>Lumbreras, Felipe</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140601</creationdate><title>Combining Priors, Appearance, and Context for Road Detection</title><author>Alvarez, Jose M. ; Lopez, Antonio M. ; Gevers, Theo ; Lumbreras, Felipe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-66a1c9558492800d58e084b31465f5834c4e48d9e0dafcfb93d69588ce290aeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>3-D scene layout</topic><topic>Cameras</topic><topic>Global Positioning System</topic><topic>Illuminant invariance</topic><topic>Image color analysis</topic><topic>lane markings</topic><topic>Lighting</topic><topic>road detection</topic><topic>road prior</topic><topic>road scene understanding</topic><topic>Roads</topic><topic>Roads &amp; highways</topic><topic>Shape</topic><topic>vanishing point</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alvarez, Jose M.</creatorcontrib><creatorcontrib>Lopez, Antonio M.</creatorcontrib><creatorcontrib>Gevers, Theo</creatorcontrib><creatorcontrib>Lumbreras, Felipe</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alvarez, Jose M.</au><au>Lopez, Antonio M.</au><au>Gevers, Theo</au><au>Lumbreras, Felipe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining Priors, Appearance, and Context for Road Detection</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2014-06-01</date><risdate>2014</risdate><volume>15</volume><issue>3</issue><spage>1168</spage><epage>1178</epage><pages>1168-1178</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Detecting the free road surface ahead of a moving vehicle is an important research topic in different areas of computer vision, such as autonomous driving or car collision warning. Current vision-based road detection methods are usually based solely on low-level features. Furthermore, they generally assume structured roads, road homogeneity, and uniform lighting conditions, constraining their applicability in real-world scenarios. In this paper, road priors and contextual information are introduced for road detection. First, we propose an algorithm to estimate road priors online using geographical information, providing relevant initial information about the road location. Then, contextual cues, including horizon lines, vanishing points, lane markings, 3-D scene layout, and road geometry, are used in addition to low-level cues derived from the appearance of roads. Finally, a generative model is used to combine these cues and priors, leading to a road detection method that is, to a large degree, robust to varying imaging conditions, road types, and scenarios.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2013.2295427</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2014-06, Vol.15 (3), p.1168-1178
issn 1524-9050
1558-0016
language eng
recordid cdi_proquest_journals_1546006877
source IEEE Electronic Library (IEL) Journals
subjects 3-D scene layout
Cameras
Global Positioning System
Illuminant invariance
Image color analysis
lane markings
Lighting
road detection
road prior
road scene understanding
Roads
Roads & highways
Shape
vanishing point
Vehicles
title Combining Priors, Appearance, and Context for Road Detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A16%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20Priors,%20Appearance,%20and%20Context%20for%20Road%20Detection&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Alvarez,%20Jose%20M.&rft.date=2014-06-01&rft.volume=15&rft.issue=3&rft.spage=1168&rft.epage=1178&rft.pages=1168-1178&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2013.2295427&rft_dat=%3Cproquest_cross%3E3377849471%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-66a1c9558492800d58e084b31465f5834c4e48d9e0dafcfb93d69588ce290aeb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1546006877&rft_id=info:pmid/&rft_ieee_id=6719504&rfr_iscdi=true