Loading…
Combining Priors, Appearance, and Context for Road Detection
Detecting the free road surface ahead of a moving vehicle is an important research topic in different areas of computer vision, such as autonomous driving or car collision warning. Current vision-based road detection methods are usually based solely on low-level features. Furthermore, they generally...
Saved in:
Published in: | IEEE transactions on intelligent transportation systems 2014-06, Vol.15 (3), p.1168-1178 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c402t-66a1c9558492800d58e084b31465f5834c4e48d9e0dafcfb93d69588ce290aeb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c402t-66a1c9558492800d58e084b31465f5834c4e48d9e0dafcfb93d69588ce290aeb3 |
container_end_page | 1178 |
container_issue | 3 |
container_start_page | 1168 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 15 |
creator | Alvarez, Jose M. Lopez, Antonio M. Gevers, Theo Lumbreras, Felipe |
description | Detecting the free road surface ahead of a moving vehicle is an important research topic in different areas of computer vision, such as autonomous driving or car collision warning. Current vision-based road detection methods are usually based solely on low-level features. Furthermore, they generally assume structured roads, road homogeneity, and uniform lighting conditions, constraining their applicability in real-world scenarios. In this paper, road priors and contextual information are introduced for road detection. First, we propose an algorithm to estimate road priors online using geographical information, providing relevant initial information about the road location. Then, contextual cues, including horizon lines, vanishing points, lane markings, 3-D scene layout, and road geometry, are used in addition to low-level cues derived from the appearance of roads. Finally, a generative model is used to combine these cues and priors, leading to a road detection method that is, to a large degree, robust to varying imaging conditions, road types, and scenarios. |
doi_str_mv | 10.1109/TITS.2013.2295427 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1546006877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6719504</ieee_id><sourcerecordid>3377849471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-66a1c9558492800d58e084b31465f5834c4e48d9e0dafcfb93d69588ce290aeb3</originalsourceid><addsrcrecordid>eNo9kN9LwzAQx4MoOKd_gPgS8HWdlzRJE_BldP4YDBSdzyFNr9Lhmpp2oP-9LRs-3XF8vnfHh5BrBnPGwNxtVpv3OQeWzjk3UvDshEyYlDoBYOp07LlIDEg4Jxddtx2mQjI2Ifd52BV1Uzef9DXWIXYzumhbdNE1HmfUNSXNQ9PjT0-rEOlbcCVdYo--r0NzSc4q99Xh1bFOycfjwyZ_TtYvT6t8sU68AN4nSjnmzfCMMFwDlFIjaFGkTChZSZ0KL1Do0iCUrvJVYdJSGam1R27AYZFOye1hbxvD9x673m7DPjbDScukUABKZ9lAsQPlY-i6iJVtY71z8dcysKMkO0qyoyR7lDRkbg6ZGhH_eZUxI0Gkf5k-YQc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1546006877</pqid></control><display><type>article</type><title>Combining Priors, Appearance, and Context for Road Detection</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Alvarez, Jose M. ; Lopez, Antonio M. ; Gevers, Theo ; Lumbreras, Felipe</creator><creatorcontrib>Alvarez, Jose M. ; Lopez, Antonio M. ; Gevers, Theo ; Lumbreras, Felipe</creatorcontrib><description>Detecting the free road surface ahead of a moving vehicle is an important research topic in different areas of computer vision, such as autonomous driving or car collision warning. Current vision-based road detection methods are usually based solely on low-level features. Furthermore, they generally assume structured roads, road homogeneity, and uniform lighting conditions, constraining their applicability in real-world scenarios. In this paper, road priors and contextual information are introduced for road detection. First, we propose an algorithm to estimate road priors online using geographical information, providing relevant initial information about the road location. Then, contextual cues, including horizon lines, vanishing points, lane markings, 3-D scene layout, and road geometry, are used in addition to low-level cues derived from the appearance of roads. Finally, a generative model is used to combine these cues and priors, leading to a road detection method that is, to a large degree, robust to varying imaging conditions, road types, and scenarios.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2013.2295427</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>3-D scene layout ; Cameras ; Global Positioning System ; Illuminant invariance ; Image color analysis ; lane markings ; Lighting ; road detection ; road prior ; road scene understanding ; Roads ; Roads & highways ; Shape ; vanishing point ; Vehicles</subject><ispartof>IEEE transactions on intelligent transportation systems, 2014-06, Vol.15 (3), p.1168-1178</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-66a1c9558492800d58e084b31465f5834c4e48d9e0dafcfb93d69588ce290aeb3</citedby><cites>FETCH-LOGICAL-c402t-66a1c9558492800d58e084b31465f5834c4e48d9e0dafcfb93d69588ce290aeb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6719504$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Alvarez, Jose M.</creatorcontrib><creatorcontrib>Lopez, Antonio M.</creatorcontrib><creatorcontrib>Gevers, Theo</creatorcontrib><creatorcontrib>Lumbreras, Felipe</creatorcontrib><title>Combining Priors, Appearance, and Context for Road Detection</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Detecting the free road surface ahead of a moving vehicle is an important research topic in different areas of computer vision, such as autonomous driving or car collision warning. Current vision-based road detection methods are usually based solely on low-level features. Furthermore, they generally assume structured roads, road homogeneity, and uniform lighting conditions, constraining their applicability in real-world scenarios. In this paper, road priors and contextual information are introduced for road detection. First, we propose an algorithm to estimate road priors online using geographical information, providing relevant initial information about the road location. Then, contextual cues, including horizon lines, vanishing points, lane markings, 3-D scene layout, and road geometry, are used in addition to low-level cues derived from the appearance of roads. Finally, a generative model is used to combine these cues and priors, leading to a road detection method that is, to a large degree, robust to varying imaging conditions, road types, and scenarios.</description><subject>3-D scene layout</subject><subject>Cameras</subject><subject>Global Positioning System</subject><subject>Illuminant invariance</subject><subject>Image color analysis</subject><subject>lane markings</subject><subject>Lighting</subject><subject>road detection</subject><subject>road prior</subject><subject>road scene understanding</subject><subject>Roads</subject><subject>Roads & highways</subject><subject>Shape</subject><subject>vanishing point</subject><subject>Vehicles</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kN9LwzAQx4MoOKd_gPgS8HWdlzRJE_BldP4YDBSdzyFNr9Lhmpp2oP-9LRs-3XF8vnfHh5BrBnPGwNxtVpv3OQeWzjk3UvDshEyYlDoBYOp07LlIDEg4Jxddtx2mQjI2Ifd52BV1Uzef9DXWIXYzumhbdNE1HmfUNSXNQ9PjT0-rEOlbcCVdYo--r0NzSc4q99Xh1bFOycfjwyZ_TtYvT6t8sU68AN4nSjnmzfCMMFwDlFIjaFGkTChZSZ0KL1Do0iCUrvJVYdJSGam1R27AYZFOye1hbxvD9x673m7DPjbDScukUABKZ9lAsQPlY-i6iJVtY71z8dcysKMkO0qyoyR7lDRkbg6ZGhH_eZUxI0Gkf5k-YQc</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Alvarez, Jose M.</creator><creator>Lopez, Antonio M.</creator><creator>Gevers, Theo</creator><creator>Lumbreras, Felipe</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140601</creationdate><title>Combining Priors, Appearance, and Context for Road Detection</title><author>Alvarez, Jose M. ; Lopez, Antonio M. ; Gevers, Theo ; Lumbreras, Felipe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-66a1c9558492800d58e084b31465f5834c4e48d9e0dafcfb93d69588ce290aeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>3-D scene layout</topic><topic>Cameras</topic><topic>Global Positioning System</topic><topic>Illuminant invariance</topic><topic>Image color analysis</topic><topic>lane markings</topic><topic>Lighting</topic><topic>road detection</topic><topic>road prior</topic><topic>road scene understanding</topic><topic>Roads</topic><topic>Roads & highways</topic><topic>Shape</topic><topic>vanishing point</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alvarez, Jose M.</creatorcontrib><creatorcontrib>Lopez, Antonio M.</creatorcontrib><creatorcontrib>Gevers, Theo</creatorcontrib><creatorcontrib>Lumbreras, Felipe</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alvarez, Jose M.</au><au>Lopez, Antonio M.</au><au>Gevers, Theo</au><au>Lumbreras, Felipe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining Priors, Appearance, and Context for Road Detection</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2014-06-01</date><risdate>2014</risdate><volume>15</volume><issue>3</issue><spage>1168</spage><epage>1178</epage><pages>1168-1178</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Detecting the free road surface ahead of a moving vehicle is an important research topic in different areas of computer vision, such as autonomous driving or car collision warning. Current vision-based road detection methods are usually based solely on low-level features. Furthermore, they generally assume structured roads, road homogeneity, and uniform lighting conditions, constraining their applicability in real-world scenarios. In this paper, road priors and contextual information are introduced for road detection. First, we propose an algorithm to estimate road priors online using geographical information, providing relevant initial information about the road location. Then, contextual cues, including horizon lines, vanishing points, lane markings, 3-D scene layout, and road geometry, are used in addition to low-level cues derived from the appearance of roads. Finally, a generative model is used to combine these cues and priors, leading to a road detection method that is, to a large degree, robust to varying imaging conditions, road types, and scenarios.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2013.2295427</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2014-06, Vol.15 (3), p.1168-1178 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_proquest_journals_1546006877 |
source | IEEE Electronic Library (IEL) Journals |
subjects | 3-D scene layout Cameras Global Positioning System Illuminant invariance Image color analysis lane markings Lighting road detection road prior road scene understanding Roads Roads & highways Shape vanishing point Vehicles |
title | Combining Priors, Appearance, and Context for Road Detection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A16%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20Priors,%20Appearance,%20and%20Context%20for%20Road%20Detection&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Alvarez,%20Jose%20M.&rft.date=2014-06-01&rft.volume=15&rft.issue=3&rft.spage=1168&rft.epage=1178&rft.pages=1168-1178&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2013.2295427&rft_dat=%3Cproquest_cross%3E3377849471%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-66a1c9558492800d58e084b31465f5834c4e48d9e0dafcfb93d69588ce290aeb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1546006877&rft_id=info:pmid/&rft_ieee_id=6719504&rfr_iscdi=true |