Loading…
Expurgated Random-Coding Ensembles: Exponents, Refinements, and Connections
This paper studies expurgated random-coding bounds and exponents for channel coding with a given (possibly suboptimal) decoding rule. Variations of Gallager's analysis are presented, yielding several asymptotic and nonasymptotic bounds on the error probability for an arbitrary codeword distribu...
Saved in:
Published in: | IEEE transactions on information theory 2014-08, Vol.60 (8), p.4449-4462 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c396t-fade143a9ab02bcdbb99bc251521cfa5aa86e2c14a9b063d972453a0e13c1ee43 |
---|---|
cites | cdi_FETCH-LOGICAL-c396t-fade143a9ab02bcdbb99bc251521cfa5aa86e2c14a9b063d972453a0e13c1ee43 |
container_end_page | 4462 |
container_issue | 8 |
container_start_page | 4449 |
container_title | IEEE transactions on information theory |
container_volume | 60 |
creator | Scarlett, Jonathan Peng, Li Merhav, Neri Martinez, Alfonso Guillen i Fabregas, Albert |
description | This paper studies expurgated random-coding bounds and exponents for channel coding with a given (possibly suboptimal) decoding rule. Variations of Gallager's analysis are presented, yielding several asymptotic and nonasymptotic bounds on the error probability for an arbitrary codeword distribution. A simple nonasymptotic bound is shown to attain an exponent of Csiszár and Körner under constant-composition coding. Using Lagrange duality, this exponent is expressed in several forms, one of which is shown to permit a direct derivation via cost-constrained coding that extends to infinite and continuous alphabets. The method of type class enumeration is studied, and it is shown that this approach can yield improved exponents and better tightness guarantees for some codeword distributions. A generalization of this approach is shown to provide a multiletter exponent that extends immediately to channels with memory. |
doi_str_mv | 10.1109/TIT.2014.2322033 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_journals_1546535331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6810903</ieee_id><sourcerecordid>3379083631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-fade143a9ab02bcdbb99bc251521cfa5aa86e2c14a9b063d972453a0e13c1ee43</originalsourceid><addsrcrecordid>eNpdkc1r3DAQxUVpodu090IuhlDIod5q9GFbuZVl04QECmF7FmN5HBxsaSPZkP731bJLCjkMw0O_9xjxGPsKfA3AzY_d7W4tOKi1kEJwKd-xFWhdl6bS6j1bcQ5NaZRqPrJPKT1lqTSIFbvbvuyX-IgzdcUD-i5M5SZ0g38stj7R1I6UrorMBE9-Tt-LB-oHT9NRZL7YBO_JzUPw6TP70OOY6Mtpn7E_19vd5qa8__3rdvPzvnTSVHPZY0egJBpsuWhd17bGtE5o0AJcjxqxqUg4UGhaXsnO1EJpiZxAOiBS8ozBMdelxdlIjqLD2QYc_ovDCF4LK2VdSZM9l0fPPobnhdJspyE5Gkf0FJZkodZSC1PVB_TiDfoUlujzjyxoVWVOSsgUPx0RQ0qReruPw4TxrwVuD43Y3Ig9NGJPjWTLt1MwJodjH9G7Ib36RFNnjvPMnR-5gYhen6smh-aYf-dykwM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1546535331</pqid></control><display><type>article</type><title>Expurgated Random-Coding Ensembles: Exponents, Refinements, and Connections</title><source>IEEE Xplore (Online service)</source><creator>Scarlett, Jonathan ; Peng, Li ; Merhav, Neri ; Martinez, Alfonso ; Guillen i Fabregas, Albert</creator><creatorcontrib>Scarlett, Jonathan ; Peng, Li ; Merhav, Neri ; Martinez, Alfonso ; Guillen i Fabregas, Albert</creatorcontrib><description>This paper studies expurgated random-coding bounds and exponents for channel coding with a given (possibly suboptimal) decoding rule. Variations of Gallager's analysis are presented, yielding several asymptotic and nonasymptotic bounds on the error probability for an arbitrary codeword distribution. A simple nonasymptotic bound is shown to attain an exponent of Csiszár and Körner under constant-composition coding. Using Lagrange duality, this exponent is expressed in several forms, one of which is shown to permit a direct derivation via cost-constrained coding that extends to infinite and continuous alphabets. The method of type class enumeration is studied, and it is shown that this approach can yield improved exponents and better tightness guarantees for some codeword distributions. A generalization of this approach is shown to provide a multiletter exponent that extends immediately to channels with memory.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2014.2322033</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Asymptotic methods ; Asymptotic properties ; Channels ; Codes ; Coding ; Coding, codes ; Decoding ; Derivation ; Electronic mail ; Encoding ; Error analysis ; Error probability ; Exact sciences and technology ; Exponents ; Expurgated error exponents ; Information theory ; Information, signal and communications theory ; IP networks ; Joints ; Lagrange multiplier ; Maximum-likelihood decoding ; Measurement ; Mismatched decoding ; Permissible error ; Probability distribution ; Random coding ; Reliability function ; Signal and communications theory ; Telecommunications and information theory ; Type class enumeration</subject><ispartof>IEEE transactions on information theory, 2014-08, Vol.60 (8), p.4449-4462</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2014</rights><rights>info:eu-repo/semantics/openAccess © 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The final published article can be found at <a href="http://dx.doi.org/10.1109/TIT.2014.2322033">http://dx.doi.org/10.1109/TIT.2014.2322033</a></rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-fade143a9ab02bcdbb99bc251521cfa5aa86e2c14a9b063d972453a0e13c1ee43</citedby><cites>FETCH-LOGICAL-c396t-fade143a9ab02bcdbb99bc251521cfa5aa86e2c14a9b063d972453a0e13c1ee43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6810903$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,309,310,314,780,784,789,790,885,23930,23931,25140,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28722000$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Scarlett, Jonathan</creatorcontrib><creatorcontrib>Peng, Li</creatorcontrib><creatorcontrib>Merhav, Neri</creatorcontrib><creatorcontrib>Martinez, Alfonso</creatorcontrib><creatorcontrib>Guillen i Fabregas, Albert</creatorcontrib><title>Expurgated Random-Coding Ensembles: Exponents, Refinements, and Connections</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>This paper studies expurgated random-coding bounds and exponents for channel coding with a given (possibly suboptimal) decoding rule. Variations of Gallager's analysis are presented, yielding several asymptotic and nonasymptotic bounds on the error probability for an arbitrary codeword distribution. A simple nonasymptotic bound is shown to attain an exponent of Csiszár and Körner under constant-composition coding. Using Lagrange duality, this exponent is expressed in several forms, one of which is shown to permit a direct derivation via cost-constrained coding that extends to infinite and continuous alphabets. The method of type class enumeration is studied, and it is shown that this approach can yield improved exponents and better tightness guarantees for some codeword distributions. A generalization of this approach is shown to provide a multiletter exponent that extends immediately to channels with memory.</description><subject>Applied sciences</subject><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Channels</subject><subject>Codes</subject><subject>Coding</subject><subject>Coding, codes</subject><subject>Decoding</subject><subject>Derivation</subject><subject>Electronic mail</subject><subject>Encoding</subject><subject>Error analysis</subject><subject>Error probability</subject><subject>Exact sciences and technology</subject><subject>Exponents</subject><subject>Expurgated error exponents</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>IP networks</subject><subject>Joints</subject><subject>Lagrange multiplier</subject><subject>Maximum-likelihood decoding</subject><subject>Measurement</subject><subject>Mismatched decoding</subject><subject>Permissible error</subject><subject>Probability distribution</subject><subject>Random coding</subject><subject>Reliability function</subject><subject>Signal and communications theory</subject><subject>Telecommunications and information theory</subject><subject>Type class enumeration</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpdkc1r3DAQxUVpodu090IuhlDIod5q9GFbuZVl04QECmF7FmN5HBxsaSPZkP731bJLCjkMw0O_9xjxGPsKfA3AzY_d7W4tOKi1kEJwKd-xFWhdl6bS6j1bcQ5NaZRqPrJPKT1lqTSIFbvbvuyX-IgzdcUD-i5M5SZ0g38stj7R1I6UrorMBE9-Tt-LB-oHT9NRZL7YBO_JzUPw6TP70OOY6Mtpn7E_19vd5qa8__3rdvPzvnTSVHPZY0egJBpsuWhd17bGtE5o0AJcjxqxqUg4UGhaXsnO1EJpiZxAOiBS8ozBMdelxdlIjqLD2QYc_ovDCF4LK2VdSZM9l0fPPobnhdJspyE5Gkf0FJZkodZSC1PVB_TiDfoUlujzjyxoVWVOSsgUPx0RQ0qReruPw4TxrwVuD43Y3Ig9NGJPjWTLt1MwJodjH9G7Ib36RFNnjvPMnR-5gYhen6smh-aYf-dykwM</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Scarlett, Jonathan</creator><creator>Peng, Li</creator><creator>Merhav, Neri</creator><creator>Martinez, Alfonso</creator><creator>Guillen i Fabregas, Albert</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>XX2</scope></search><sort><creationdate>20140801</creationdate><title>Expurgated Random-Coding Ensembles: Exponents, Refinements, and Connections</title><author>Scarlett, Jonathan ; Peng, Li ; Merhav, Neri ; Martinez, Alfonso ; Guillen i Fabregas, Albert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-fade143a9ab02bcdbb99bc251521cfa5aa86e2c14a9b063d972453a0e13c1ee43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Channels</topic><topic>Codes</topic><topic>Coding</topic><topic>Coding, codes</topic><topic>Decoding</topic><topic>Derivation</topic><topic>Electronic mail</topic><topic>Encoding</topic><topic>Error analysis</topic><topic>Error probability</topic><topic>Exact sciences and technology</topic><topic>Exponents</topic><topic>Expurgated error exponents</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>IP networks</topic><topic>Joints</topic><topic>Lagrange multiplier</topic><topic>Maximum-likelihood decoding</topic><topic>Measurement</topic><topic>Mismatched decoding</topic><topic>Permissible error</topic><topic>Probability distribution</topic><topic>Random coding</topic><topic>Reliability function</topic><topic>Signal and communications theory</topic><topic>Telecommunications and information theory</topic><topic>Type class enumeration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scarlett, Jonathan</creatorcontrib><creatorcontrib>Peng, Li</creatorcontrib><creatorcontrib>Merhav, Neri</creatorcontrib><creatorcontrib>Martinez, Alfonso</creatorcontrib><creatorcontrib>Guillen i Fabregas, Albert</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Recercat</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scarlett, Jonathan</au><au>Peng, Li</au><au>Merhav, Neri</au><au>Martinez, Alfonso</au><au>Guillen i Fabregas, Albert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Expurgated Random-Coding Ensembles: Exponents, Refinements, and Connections</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2014-08-01</date><risdate>2014</risdate><volume>60</volume><issue>8</issue><spage>4449</spage><epage>4462</epage><pages>4449-4462</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>This paper studies expurgated random-coding bounds and exponents for channel coding with a given (possibly suboptimal) decoding rule. Variations of Gallager's analysis are presented, yielding several asymptotic and nonasymptotic bounds on the error probability for an arbitrary codeword distribution. A simple nonasymptotic bound is shown to attain an exponent of Csiszár and Körner under constant-composition coding. Using Lagrange duality, this exponent is expressed in several forms, one of which is shown to permit a direct derivation via cost-constrained coding that extends to infinite and continuous alphabets. The method of type class enumeration is studied, and it is shown that this approach can yield improved exponents and better tightness guarantees for some codeword distributions. A generalization of this approach is shown to provide a multiletter exponent that extends immediately to channels with memory.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.2014.2322033</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2014-08, Vol.60 (8), p.4449-4462 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_proquest_journals_1546535331 |
source | IEEE Xplore (Online service) |
subjects | Applied sciences Asymptotic methods Asymptotic properties Channels Codes Coding Coding, codes Decoding Derivation Electronic mail Encoding Error analysis Error probability Exact sciences and technology Exponents Expurgated error exponents Information theory Information, signal and communications theory IP networks Joints Lagrange multiplier Maximum-likelihood decoding Measurement Mismatched decoding Permissible error Probability distribution Random coding Reliability function Signal and communications theory Telecommunications and information theory Type class enumeration |
title | Expurgated Random-Coding Ensembles: Exponents, Refinements, and Connections |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T17%3A06%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Expurgated%20Random-Coding%20Ensembles:%20Exponents,%20Refinements,%20and%20Connections&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Scarlett,%20Jonathan&rft.date=2014-08-01&rft.volume=60&rft.issue=8&rft.spage=4449&rft.epage=4462&rft.pages=4449-4462&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2014.2322033&rft_dat=%3Cproquest_pasca%3E3379083631%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c396t-fade143a9ab02bcdbb99bc251521cfa5aa86e2c14a9b063d972453a0e13c1ee43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1546535331&rft_id=info:pmid/&rft_ieee_id=6810903&rfr_iscdi=true |