Loading…

Expurgated Random-Coding Ensembles: Exponents, Refinements, and Connections

This paper studies expurgated random-coding bounds and exponents for channel coding with a given (possibly suboptimal) decoding rule. Variations of Gallager's analysis are presented, yielding several asymptotic and nonasymptotic bounds on the error probability for an arbitrary codeword distribu...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory 2014-08, Vol.60 (8), p.4449-4462
Main Authors: Scarlett, Jonathan, Peng, Li, Merhav, Neri, Martinez, Alfonso, Guillen i Fabregas, Albert
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c396t-fade143a9ab02bcdbb99bc251521cfa5aa86e2c14a9b063d972453a0e13c1ee43
cites cdi_FETCH-LOGICAL-c396t-fade143a9ab02bcdbb99bc251521cfa5aa86e2c14a9b063d972453a0e13c1ee43
container_end_page 4462
container_issue 8
container_start_page 4449
container_title IEEE transactions on information theory
container_volume 60
creator Scarlett, Jonathan
Peng, Li
Merhav, Neri
Martinez, Alfonso
Guillen i Fabregas, Albert
description This paper studies expurgated random-coding bounds and exponents for channel coding with a given (possibly suboptimal) decoding rule. Variations of Gallager's analysis are presented, yielding several asymptotic and nonasymptotic bounds on the error probability for an arbitrary codeword distribution. A simple nonasymptotic bound is shown to attain an exponent of Csiszár and Körner under constant-composition coding. Using Lagrange duality, this exponent is expressed in several forms, one of which is shown to permit a direct derivation via cost-constrained coding that extends to infinite and continuous alphabets. The method of type class enumeration is studied, and it is shown that this approach can yield improved exponents and better tightness guarantees for some codeword distributions. A generalization of this approach is shown to provide a multiletter exponent that extends immediately to channels with memory.
doi_str_mv 10.1109/TIT.2014.2322033
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_journals_1546535331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6810903</ieee_id><sourcerecordid>3379083631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-fade143a9ab02bcdbb99bc251521cfa5aa86e2c14a9b063d972453a0e13c1ee43</originalsourceid><addsrcrecordid>eNpdkc1r3DAQxUVpodu090IuhlDIod5q9GFbuZVl04QECmF7FmN5HBxsaSPZkP731bJLCjkMw0O_9xjxGPsKfA3AzY_d7W4tOKi1kEJwKd-xFWhdl6bS6j1bcQ5NaZRqPrJPKT1lqTSIFbvbvuyX-IgzdcUD-i5M5SZ0g38stj7R1I6UrorMBE9-Tt-LB-oHT9NRZL7YBO_JzUPw6TP70OOY6Mtpn7E_19vd5qa8__3rdvPzvnTSVHPZY0egJBpsuWhd17bGtE5o0AJcjxqxqUg4UGhaXsnO1EJpiZxAOiBS8ozBMdelxdlIjqLD2QYc_ovDCF4LK2VdSZM9l0fPPobnhdJspyE5Gkf0FJZkodZSC1PVB_TiDfoUlujzjyxoVWVOSsgUPx0RQ0qReruPw4TxrwVuD43Y3Ig9NGJPjWTLt1MwJodjH9G7Ib36RFNnjvPMnR-5gYhen6smh-aYf-dykwM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1546535331</pqid></control><display><type>article</type><title>Expurgated Random-Coding Ensembles: Exponents, Refinements, and Connections</title><source>IEEE Xplore (Online service)</source><creator>Scarlett, Jonathan ; Peng, Li ; Merhav, Neri ; Martinez, Alfonso ; Guillen i Fabregas, Albert</creator><creatorcontrib>Scarlett, Jonathan ; Peng, Li ; Merhav, Neri ; Martinez, Alfonso ; Guillen i Fabregas, Albert</creatorcontrib><description>This paper studies expurgated random-coding bounds and exponents for channel coding with a given (possibly suboptimal) decoding rule. Variations of Gallager's analysis are presented, yielding several asymptotic and nonasymptotic bounds on the error probability for an arbitrary codeword distribution. A simple nonasymptotic bound is shown to attain an exponent of Csiszár and Körner under constant-composition coding. Using Lagrange duality, this exponent is expressed in several forms, one of which is shown to permit a direct derivation via cost-constrained coding that extends to infinite and continuous alphabets. The method of type class enumeration is studied, and it is shown that this approach can yield improved exponents and better tightness guarantees for some codeword distributions. A generalization of this approach is shown to provide a multiletter exponent that extends immediately to channels with memory.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2014.2322033</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Asymptotic methods ; Asymptotic properties ; Channels ; Codes ; Coding ; Coding, codes ; Decoding ; Derivation ; Electronic mail ; Encoding ; Error analysis ; Error probability ; Exact sciences and technology ; Exponents ; Expurgated error exponents ; Information theory ; Information, signal and communications theory ; IP networks ; Joints ; Lagrange multiplier ; Maximum-likelihood decoding ; Measurement ; Mismatched decoding ; Permissible error ; Probability distribution ; Random coding ; Reliability function ; Signal and communications theory ; Telecommunications and information theory ; Type class enumeration</subject><ispartof>IEEE transactions on information theory, 2014-08, Vol.60 (8), p.4449-4462</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2014</rights><rights>info:eu-repo/semantics/openAccess © 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The final published article can be found at &lt;a href="http://dx.doi.org/10.1109/TIT.2014.2322033"&gt;http://dx.doi.org/10.1109/TIT.2014.2322033&lt;/a&gt;</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-fade143a9ab02bcdbb99bc251521cfa5aa86e2c14a9b063d972453a0e13c1ee43</citedby><cites>FETCH-LOGICAL-c396t-fade143a9ab02bcdbb99bc251521cfa5aa86e2c14a9b063d972453a0e13c1ee43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6810903$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,309,310,314,780,784,789,790,885,23930,23931,25140,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28722000$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Scarlett, Jonathan</creatorcontrib><creatorcontrib>Peng, Li</creatorcontrib><creatorcontrib>Merhav, Neri</creatorcontrib><creatorcontrib>Martinez, Alfonso</creatorcontrib><creatorcontrib>Guillen i Fabregas, Albert</creatorcontrib><title>Expurgated Random-Coding Ensembles: Exponents, Refinements, and Connections</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>This paper studies expurgated random-coding bounds and exponents for channel coding with a given (possibly suboptimal) decoding rule. Variations of Gallager's analysis are presented, yielding several asymptotic and nonasymptotic bounds on the error probability for an arbitrary codeword distribution. A simple nonasymptotic bound is shown to attain an exponent of Csiszár and Körner under constant-composition coding. Using Lagrange duality, this exponent is expressed in several forms, one of which is shown to permit a direct derivation via cost-constrained coding that extends to infinite and continuous alphabets. The method of type class enumeration is studied, and it is shown that this approach can yield improved exponents and better tightness guarantees for some codeword distributions. A generalization of this approach is shown to provide a multiletter exponent that extends immediately to channels with memory.</description><subject>Applied sciences</subject><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Channels</subject><subject>Codes</subject><subject>Coding</subject><subject>Coding, codes</subject><subject>Decoding</subject><subject>Derivation</subject><subject>Electronic mail</subject><subject>Encoding</subject><subject>Error analysis</subject><subject>Error probability</subject><subject>Exact sciences and technology</subject><subject>Exponents</subject><subject>Expurgated error exponents</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>IP networks</subject><subject>Joints</subject><subject>Lagrange multiplier</subject><subject>Maximum-likelihood decoding</subject><subject>Measurement</subject><subject>Mismatched decoding</subject><subject>Permissible error</subject><subject>Probability distribution</subject><subject>Random coding</subject><subject>Reliability function</subject><subject>Signal and communications theory</subject><subject>Telecommunications and information theory</subject><subject>Type class enumeration</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpdkc1r3DAQxUVpodu090IuhlDIod5q9GFbuZVl04QECmF7FmN5HBxsaSPZkP731bJLCjkMw0O_9xjxGPsKfA3AzY_d7W4tOKi1kEJwKd-xFWhdl6bS6j1bcQ5NaZRqPrJPKT1lqTSIFbvbvuyX-IgzdcUD-i5M5SZ0g38stj7R1I6UrorMBE9-Tt-LB-oHT9NRZL7YBO_JzUPw6TP70OOY6Mtpn7E_19vd5qa8__3rdvPzvnTSVHPZY0egJBpsuWhd17bGtE5o0AJcjxqxqUg4UGhaXsnO1EJpiZxAOiBS8ozBMdelxdlIjqLD2QYc_ovDCF4LK2VdSZM9l0fPPobnhdJspyE5Gkf0FJZkodZSC1PVB_TiDfoUlujzjyxoVWVOSsgUPx0RQ0qReruPw4TxrwVuD43Y3Ig9NGJPjWTLt1MwJodjH9G7Ib36RFNnjvPMnR-5gYhen6smh-aYf-dykwM</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Scarlett, Jonathan</creator><creator>Peng, Li</creator><creator>Merhav, Neri</creator><creator>Martinez, Alfonso</creator><creator>Guillen i Fabregas, Albert</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>XX2</scope></search><sort><creationdate>20140801</creationdate><title>Expurgated Random-Coding Ensembles: Exponents, Refinements, and Connections</title><author>Scarlett, Jonathan ; Peng, Li ; Merhav, Neri ; Martinez, Alfonso ; Guillen i Fabregas, Albert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-fade143a9ab02bcdbb99bc251521cfa5aa86e2c14a9b063d972453a0e13c1ee43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Channels</topic><topic>Codes</topic><topic>Coding</topic><topic>Coding, codes</topic><topic>Decoding</topic><topic>Derivation</topic><topic>Electronic mail</topic><topic>Encoding</topic><topic>Error analysis</topic><topic>Error probability</topic><topic>Exact sciences and technology</topic><topic>Exponents</topic><topic>Expurgated error exponents</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>IP networks</topic><topic>Joints</topic><topic>Lagrange multiplier</topic><topic>Maximum-likelihood decoding</topic><topic>Measurement</topic><topic>Mismatched decoding</topic><topic>Permissible error</topic><topic>Probability distribution</topic><topic>Random coding</topic><topic>Reliability function</topic><topic>Signal and communications theory</topic><topic>Telecommunications and information theory</topic><topic>Type class enumeration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scarlett, Jonathan</creatorcontrib><creatorcontrib>Peng, Li</creatorcontrib><creatorcontrib>Merhav, Neri</creatorcontrib><creatorcontrib>Martinez, Alfonso</creatorcontrib><creatorcontrib>Guillen i Fabregas, Albert</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Recercat</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scarlett, Jonathan</au><au>Peng, Li</au><au>Merhav, Neri</au><au>Martinez, Alfonso</au><au>Guillen i Fabregas, Albert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Expurgated Random-Coding Ensembles: Exponents, Refinements, and Connections</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2014-08-01</date><risdate>2014</risdate><volume>60</volume><issue>8</issue><spage>4449</spage><epage>4462</epage><pages>4449-4462</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>This paper studies expurgated random-coding bounds and exponents for channel coding with a given (possibly suboptimal) decoding rule. Variations of Gallager's analysis are presented, yielding several asymptotic and nonasymptotic bounds on the error probability for an arbitrary codeword distribution. A simple nonasymptotic bound is shown to attain an exponent of Csiszár and Körner under constant-composition coding. Using Lagrange duality, this exponent is expressed in several forms, one of which is shown to permit a direct derivation via cost-constrained coding that extends to infinite and continuous alphabets. The method of type class enumeration is studied, and it is shown that this approach can yield improved exponents and better tightness guarantees for some codeword distributions. A generalization of this approach is shown to provide a multiletter exponent that extends immediately to channels with memory.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.2014.2322033</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2014-08, Vol.60 (8), p.4449-4462
issn 0018-9448
1557-9654
language eng
recordid cdi_proquest_journals_1546535331
source IEEE Xplore (Online service)
subjects Applied sciences
Asymptotic methods
Asymptotic properties
Channels
Codes
Coding
Coding, codes
Decoding
Derivation
Electronic mail
Encoding
Error analysis
Error probability
Exact sciences and technology
Exponents
Expurgated error exponents
Information theory
Information, signal and communications theory
IP networks
Joints
Lagrange multiplier
Maximum-likelihood decoding
Measurement
Mismatched decoding
Permissible error
Probability distribution
Random coding
Reliability function
Signal and communications theory
Telecommunications and information theory
Type class enumeration
title Expurgated Random-Coding Ensembles: Exponents, Refinements, and Connections
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T17%3A06%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Expurgated%20Random-Coding%20Ensembles:%20Exponents,%20Refinements,%20and%20Connections&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Scarlett,%20Jonathan&rft.date=2014-08-01&rft.volume=60&rft.issue=8&rft.spage=4449&rft.epage=4462&rft.pages=4449-4462&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2014.2322033&rft_dat=%3Cproquest_pasca%3E3379083631%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c396t-fade143a9ab02bcdbb99bc251521cfa5aa86e2c14a9b063d972453a0e13c1ee43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1546535331&rft_id=info:pmid/&rft_ieee_id=6810903&rfr_iscdi=true