Loading…
Fast missing-data IAA with application to notched spectrum SAR
Recently, the spectral estimation method known as the iterative adaptive approach (IAA) has been shown to provide higher resolution and lower sidelobes than comparable spectral estimation methods. The computational complexity is higher than methods such as the periodogram (matched filter method). Fa...
Saved in:
Published in: | IEEE transactions on aerospace and electronic systems 2014-04, Vol.50 (2), p.959-971 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c329t-5e9cec12b79dce011aaab2e21f73ef46fc5d992b8f73d4eee3100e8d63b190a33 |
---|---|
cites | cdi_FETCH-LOGICAL-c329t-5e9cec12b79dce011aaab2e21f73ef46fc5d992b8f73d4eee3100e8d63b190a33 |
container_end_page | 971 |
container_issue | 2 |
container_start_page | 959 |
container_title | IEEE transactions on aerospace and electronic systems |
container_volume | 50 |
creator | Karlsson, Johan Rowe, William Luzhou Xu Glentis, George-Othon Jian Li |
description | Recently, the spectral estimation method known as the iterative adaptive approach (IAA) has been shown to provide higher resolution and lower sidelobes than comparable spectral estimation methods. The computational complexity is higher than methods such as the periodogram (matched filter method). Fast algorithms have been developed that considerably reduce the computational complexity of IAA by using Toeplitz and Vandermonde structures. For the missing-data case, several of these structures are lost, and existing fast algorithms are only efficient when the number of available samples is small. In this work, we consider the case in which the number of missing samples is small. This allows us to use low-rank completion to transform the problem to the structured problem. We compare the computational speed of the algorithm with the state of the art and demonstrate the utility in a frequency-notched synthetic aperture radar imaging problem. |
doi_str_mv | 10.1109/TAES.2014.120529 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1547814072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6850194</ieee_id><sourcerecordid>3382198001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-5e9cec12b79dce011aaab2e21f73ef46fc5d992b8f73d4eee3100e8d63b190a33</originalsourceid><addsrcrecordid>eNo9kN9LwzAUhYMoOKfvgi8Fnztzk_RHXoQyNx0MBDd9DWmabplbU5OU4X9vR2VPlwPfOVw-hO4BTwAwf1oXs9WEYGATIDgh_AKNIEmymKeYXqIRxpDHnCRwjW683_WR5YyO0PNc-hAdjPem2cSVDDJaFEV0NGEbybbdGyWDsU0UbNTYoLa6inyrVXDdIVoVH7foqpZ7r-_-7xh9zmfr6Vu8fH9dTItlrCjhIU40V1oBKTNeKY0BpJQl0QTqjOqapbVKKs5Jmfe5YlprChjrvEppCRxLSscoHnb9UbddKVpnDtL9CiuNeDFfhbBuI77DVkCSEYp7_nHgW2d_Ou2D2NnONf2LPcGyHBjuuTHCA6Wc9d7p-rwLWJysipNVcbIqBqt95WGomP7LM57mCQbO6B-HCXJ-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1547814072</pqid></control><display><type>article</type><title>Fast missing-data IAA with application to notched spectrum SAR</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Karlsson, Johan ; Rowe, William ; Luzhou Xu ; Glentis, George-Othon ; Jian Li</creator><creatorcontrib>Karlsson, Johan ; Rowe, William ; Luzhou Xu ; Glentis, George-Othon ; Jian Li</creatorcontrib><description>Recently, the spectral estimation method known as the iterative adaptive approach (IAA) has been shown to provide higher resolution and lower sidelobes than comparable spectral estimation methods. The computational complexity is higher than methods such as the periodogram (matched filter method). Fast algorithms have been developed that considerably reduce the computational complexity of IAA by using Toeplitz and Vandermonde structures. For the missing-data case, several of these structures are lost, and existing fast algorithms are only efficient when the number of available samples is small. In this work, we consider the case in which the number of missing samples is small. This allows us to use low-rank completion to transform the problem to the structured problem. We compare the computational speed of the algorithm with the state of the art and demonstrate the utility in a frequency-notched synthetic aperture radar imaging problem.</description><identifier>ISSN: 0018-9251</identifier><identifier>ISSN: 1557-9603</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/TAES.2014.120529</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Apes ; Computational complexity ; Covariance matrices ; Educational institutions ; Estimation ; Fast Implementation ; Interference ; Iterative Adaptive Approach ; Iterative methods ; Recovery ; Vectors</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2014-04, Vol.50 (2), p.959-971</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-5e9cec12b79dce011aaab2e21f73ef46fc5d992b8f73d4eee3100e8d63b190a33</citedby><cites>FETCH-LOGICAL-c329t-5e9cec12b79dce011aaab2e21f73ef46fc5d992b8f73d4eee3100e8d63b190a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6850194$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,54795</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-157230$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Karlsson, Johan</creatorcontrib><creatorcontrib>Rowe, William</creatorcontrib><creatorcontrib>Luzhou Xu</creatorcontrib><creatorcontrib>Glentis, George-Othon</creatorcontrib><creatorcontrib>Jian Li</creatorcontrib><title>Fast missing-data IAA with application to notched spectrum SAR</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>Recently, the spectral estimation method known as the iterative adaptive approach (IAA) has been shown to provide higher resolution and lower sidelobes than comparable spectral estimation methods. The computational complexity is higher than methods such as the periodogram (matched filter method). Fast algorithms have been developed that considerably reduce the computational complexity of IAA by using Toeplitz and Vandermonde structures. For the missing-data case, several of these structures are lost, and existing fast algorithms are only efficient when the number of available samples is small. In this work, we consider the case in which the number of missing samples is small. This allows us to use low-rank completion to transform the problem to the structured problem. We compare the computational speed of the algorithm with the state of the art and demonstrate the utility in a frequency-notched synthetic aperture radar imaging problem.</description><subject>Algorithms</subject><subject>Apes</subject><subject>Computational complexity</subject><subject>Covariance matrices</subject><subject>Educational institutions</subject><subject>Estimation</subject><subject>Fast Implementation</subject><subject>Interference</subject><subject>Iterative Adaptive Approach</subject><subject>Iterative methods</subject><subject>Recovery</subject><subject>Vectors</subject><issn>0018-9251</issn><issn>1557-9603</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kN9LwzAUhYMoOKfvgi8Fnztzk_RHXoQyNx0MBDd9DWmabplbU5OU4X9vR2VPlwPfOVw-hO4BTwAwf1oXs9WEYGATIDgh_AKNIEmymKeYXqIRxpDHnCRwjW683_WR5YyO0PNc-hAdjPem2cSVDDJaFEV0NGEbybbdGyWDsU0UbNTYoLa6inyrVXDdIVoVH7foqpZ7r-_-7xh9zmfr6Vu8fH9dTItlrCjhIU40V1oBKTNeKY0BpJQl0QTqjOqapbVKKs5Jmfe5YlprChjrvEppCRxLSscoHnb9UbddKVpnDtL9CiuNeDFfhbBuI77DVkCSEYp7_nHgW2d_Ou2D2NnONf2LPcGyHBjuuTHCA6Wc9d7p-rwLWJysipNVcbIqBqt95WGomP7LM57mCQbO6B-HCXJ-</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Karlsson, Johan</creator><creator>Rowe, William</creator><creator>Luzhou Xu</creator><creator>Glentis, George-Othon</creator><creator>Jian Li</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope></search><sort><creationdate>20140401</creationdate><title>Fast missing-data IAA with application to notched spectrum SAR</title><author>Karlsson, Johan ; Rowe, William ; Luzhou Xu ; Glentis, George-Othon ; Jian Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-5e9cec12b79dce011aaab2e21f73ef46fc5d992b8f73d4eee3100e8d63b190a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Apes</topic><topic>Computational complexity</topic><topic>Covariance matrices</topic><topic>Educational institutions</topic><topic>Estimation</topic><topic>Fast Implementation</topic><topic>Interference</topic><topic>Iterative Adaptive Approach</topic><topic>Iterative methods</topic><topic>Recovery</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karlsson, Johan</creatorcontrib><creatorcontrib>Rowe, William</creatorcontrib><creatorcontrib>Luzhou Xu</creatorcontrib><creatorcontrib>Glentis, George-Othon</creatorcontrib><creatorcontrib>Jian Li</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karlsson, Johan</au><au>Rowe, William</au><au>Luzhou Xu</au><au>Glentis, George-Othon</au><au>Jian Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast missing-data IAA with application to notched spectrum SAR</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2014-04-01</date><risdate>2014</risdate><volume>50</volume><issue>2</issue><spage>959</spage><epage>971</epage><pages>959-971</pages><issn>0018-9251</issn><issn>1557-9603</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>Recently, the spectral estimation method known as the iterative adaptive approach (IAA) has been shown to provide higher resolution and lower sidelobes than comparable spectral estimation methods. The computational complexity is higher than methods such as the periodogram (matched filter method). Fast algorithms have been developed that considerably reduce the computational complexity of IAA by using Toeplitz and Vandermonde structures. For the missing-data case, several of these structures are lost, and existing fast algorithms are only efficient when the number of available samples is small. In this work, we consider the case in which the number of missing samples is small. This allows us to use low-rank completion to transform the problem to the structured problem. We compare the computational speed of the algorithm with the state of the art and demonstrate the utility in a frequency-notched synthetic aperture radar imaging problem.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAES.2014.120529</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9251 |
ispartof | IEEE transactions on aerospace and electronic systems, 2014-04, Vol.50 (2), p.959-971 |
issn | 0018-9251 1557-9603 1557-9603 |
language | eng |
recordid | cdi_proquest_journals_1547814072 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Apes Computational complexity Covariance matrices Educational institutions Estimation Fast Implementation Interference Iterative Adaptive Approach Iterative methods Recovery Vectors |
title | Fast missing-data IAA with application to notched spectrum SAR |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A28%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20missing-data%20IAA%20with%20application%20to%20notched%20spectrum%20SAR&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Karlsson,%20Johan&rft.date=2014-04-01&rft.volume=50&rft.issue=2&rft.spage=959&rft.epage=971&rft.pages=959-971&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/TAES.2014.120529&rft_dat=%3Cproquest_cross%3E3382198001%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c329t-5e9cec12b79dce011aaab2e21f73ef46fc5d992b8f73d4eee3100e8d63b190a33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1547814072&rft_id=info:pmid/&rft_ieee_id=6850194&rfr_iscdi=true |