Loading…

Fast missing-data IAA with application to notched spectrum SAR

Recently, the spectral estimation method known as the iterative adaptive approach (IAA) has been shown to provide higher resolution and lower sidelobes than comparable spectral estimation methods. The computational complexity is higher than methods such as the periodogram (matched filter method). Fa...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on aerospace and electronic systems 2014-04, Vol.50 (2), p.959-971
Main Authors: Karlsson, Johan, Rowe, William, Luzhou Xu, Glentis, George-Othon, Jian Li
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c329t-5e9cec12b79dce011aaab2e21f73ef46fc5d992b8f73d4eee3100e8d63b190a33
cites cdi_FETCH-LOGICAL-c329t-5e9cec12b79dce011aaab2e21f73ef46fc5d992b8f73d4eee3100e8d63b190a33
container_end_page 971
container_issue 2
container_start_page 959
container_title IEEE transactions on aerospace and electronic systems
container_volume 50
creator Karlsson, Johan
Rowe, William
Luzhou Xu
Glentis, George-Othon
Jian Li
description Recently, the spectral estimation method known as the iterative adaptive approach (IAA) has been shown to provide higher resolution and lower sidelobes than comparable spectral estimation methods. The computational complexity is higher than methods such as the periodogram (matched filter method). Fast algorithms have been developed that considerably reduce the computational complexity of IAA by using Toeplitz and Vandermonde structures. For the missing-data case, several of these structures are lost, and existing fast algorithms are only efficient when the number of available samples is small. In this work, we consider the case in which the number of missing samples is small. This allows us to use low-rank completion to transform the problem to the structured problem. We compare the computational speed of the algorithm with the state of the art and demonstrate the utility in a frequency-notched synthetic aperture radar imaging problem.
doi_str_mv 10.1109/TAES.2014.120529
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1547814072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6850194</ieee_id><sourcerecordid>3382198001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-5e9cec12b79dce011aaab2e21f73ef46fc5d992b8f73d4eee3100e8d63b190a33</originalsourceid><addsrcrecordid>eNo9kN9LwzAUhYMoOKfvgi8Fnztzk_RHXoQyNx0MBDd9DWmabplbU5OU4X9vR2VPlwPfOVw-hO4BTwAwf1oXs9WEYGATIDgh_AKNIEmymKeYXqIRxpDHnCRwjW683_WR5YyO0PNc-hAdjPem2cSVDDJaFEV0NGEbybbdGyWDsU0UbNTYoLa6inyrVXDdIVoVH7foqpZ7r-_-7xh9zmfr6Vu8fH9dTItlrCjhIU40V1oBKTNeKY0BpJQl0QTqjOqapbVKKs5Jmfe5YlprChjrvEppCRxLSscoHnb9UbddKVpnDtL9CiuNeDFfhbBuI77DVkCSEYp7_nHgW2d_Ou2D2NnONf2LPcGyHBjuuTHCA6Wc9d7p-rwLWJysipNVcbIqBqt95WGomP7LM57mCQbO6B-HCXJ-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1547814072</pqid></control><display><type>article</type><title>Fast missing-data IAA with application to notched spectrum SAR</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Karlsson, Johan ; Rowe, William ; Luzhou Xu ; Glentis, George-Othon ; Jian Li</creator><creatorcontrib>Karlsson, Johan ; Rowe, William ; Luzhou Xu ; Glentis, George-Othon ; Jian Li</creatorcontrib><description>Recently, the spectral estimation method known as the iterative adaptive approach (IAA) has been shown to provide higher resolution and lower sidelobes than comparable spectral estimation methods. The computational complexity is higher than methods such as the periodogram (matched filter method). Fast algorithms have been developed that considerably reduce the computational complexity of IAA by using Toeplitz and Vandermonde structures. For the missing-data case, several of these structures are lost, and existing fast algorithms are only efficient when the number of available samples is small. In this work, we consider the case in which the number of missing samples is small. This allows us to use low-rank completion to transform the problem to the structured problem. We compare the computational speed of the algorithm with the state of the art and demonstrate the utility in a frequency-notched synthetic aperture radar imaging problem.</description><identifier>ISSN: 0018-9251</identifier><identifier>ISSN: 1557-9603</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/TAES.2014.120529</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Apes ; Computational complexity ; Covariance matrices ; Educational institutions ; Estimation ; Fast Implementation ; Interference ; Iterative Adaptive Approach ; Iterative methods ; Recovery ; Vectors</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2014-04, Vol.50 (2), p.959-971</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-5e9cec12b79dce011aaab2e21f73ef46fc5d992b8f73d4eee3100e8d63b190a33</citedby><cites>FETCH-LOGICAL-c329t-5e9cec12b79dce011aaab2e21f73ef46fc5d992b8f73d4eee3100e8d63b190a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6850194$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,54795</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-157230$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Karlsson, Johan</creatorcontrib><creatorcontrib>Rowe, William</creatorcontrib><creatorcontrib>Luzhou Xu</creatorcontrib><creatorcontrib>Glentis, George-Othon</creatorcontrib><creatorcontrib>Jian Li</creatorcontrib><title>Fast missing-data IAA with application to notched spectrum SAR</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>Recently, the spectral estimation method known as the iterative adaptive approach (IAA) has been shown to provide higher resolution and lower sidelobes than comparable spectral estimation methods. The computational complexity is higher than methods such as the periodogram (matched filter method). Fast algorithms have been developed that considerably reduce the computational complexity of IAA by using Toeplitz and Vandermonde structures. For the missing-data case, several of these structures are lost, and existing fast algorithms are only efficient when the number of available samples is small. In this work, we consider the case in which the number of missing samples is small. This allows us to use low-rank completion to transform the problem to the structured problem. We compare the computational speed of the algorithm with the state of the art and demonstrate the utility in a frequency-notched synthetic aperture radar imaging problem.</description><subject>Algorithms</subject><subject>Apes</subject><subject>Computational complexity</subject><subject>Covariance matrices</subject><subject>Educational institutions</subject><subject>Estimation</subject><subject>Fast Implementation</subject><subject>Interference</subject><subject>Iterative Adaptive Approach</subject><subject>Iterative methods</subject><subject>Recovery</subject><subject>Vectors</subject><issn>0018-9251</issn><issn>1557-9603</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kN9LwzAUhYMoOKfvgi8Fnztzk_RHXoQyNx0MBDd9DWmabplbU5OU4X9vR2VPlwPfOVw-hO4BTwAwf1oXs9WEYGATIDgh_AKNIEmymKeYXqIRxpDHnCRwjW683_WR5YyO0PNc-hAdjPem2cSVDDJaFEV0NGEbybbdGyWDsU0UbNTYoLa6inyrVXDdIVoVH7foqpZ7r-_-7xh9zmfr6Vu8fH9dTItlrCjhIU40V1oBKTNeKY0BpJQl0QTqjOqapbVKKs5Jmfe5YlprChjrvEppCRxLSscoHnb9UbddKVpnDtL9CiuNeDFfhbBuI77DVkCSEYp7_nHgW2d_Ou2D2NnONf2LPcGyHBjuuTHCA6Wc9d7p-rwLWJysipNVcbIqBqt95WGomP7LM57mCQbO6B-HCXJ-</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Karlsson, Johan</creator><creator>Rowe, William</creator><creator>Luzhou Xu</creator><creator>Glentis, George-Othon</creator><creator>Jian Li</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope></search><sort><creationdate>20140401</creationdate><title>Fast missing-data IAA with application to notched spectrum SAR</title><author>Karlsson, Johan ; Rowe, William ; Luzhou Xu ; Glentis, George-Othon ; Jian Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-5e9cec12b79dce011aaab2e21f73ef46fc5d992b8f73d4eee3100e8d63b190a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Apes</topic><topic>Computational complexity</topic><topic>Covariance matrices</topic><topic>Educational institutions</topic><topic>Estimation</topic><topic>Fast Implementation</topic><topic>Interference</topic><topic>Iterative Adaptive Approach</topic><topic>Iterative methods</topic><topic>Recovery</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karlsson, Johan</creatorcontrib><creatorcontrib>Rowe, William</creatorcontrib><creatorcontrib>Luzhou Xu</creatorcontrib><creatorcontrib>Glentis, George-Othon</creatorcontrib><creatorcontrib>Jian Li</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karlsson, Johan</au><au>Rowe, William</au><au>Luzhou Xu</au><au>Glentis, George-Othon</au><au>Jian Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast missing-data IAA with application to notched spectrum SAR</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2014-04-01</date><risdate>2014</risdate><volume>50</volume><issue>2</issue><spage>959</spage><epage>971</epage><pages>959-971</pages><issn>0018-9251</issn><issn>1557-9603</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>Recently, the spectral estimation method known as the iterative adaptive approach (IAA) has been shown to provide higher resolution and lower sidelobes than comparable spectral estimation methods. The computational complexity is higher than methods such as the periodogram (matched filter method). Fast algorithms have been developed that considerably reduce the computational complexity of IAA by using Toeplitz and Vandermonde structures. For the missing-data case, several of these structures are lost, and existing fast algorithms are only efficient when the number of available samples is small. In this work, we consider the case in which the number of missing samples is small. This allows us to use low-rank completion to transform the problem to the structured problem. We compare the computational speed of the algorithm with the state of the art and demonstrate the utility in a frequency-notched synthetic aperture radar imaging problem.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAES.2014.120529</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9251
ispartof IEEE transactions on aerospace and electronic systems, 2014-04, Vol.50 (2), p.959-971
issn 0018-9251
1557-9603
1557-9603
language eng
recordid cdi_proquest_journals_1547814072
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Apes
Computational complexity
Covariance matrices
Educational institutions
Estimation
Fast Implementation
Interference
Iterative Adaptive Approach
Iterative methods
Recovery
Vectors
title Fast missing-data IAA with application to notched spectrum SAR
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A28%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20missing-data%20IAA%20with%20application%20to%20notched%20spectrum%20SAR&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Karlsson,%20Johan&rft.date=2014-04-01&rft.volume=50&rft.issue=2&rft.spage=959&rft.epage=971&rft.pages=959-971&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/TAES.2014.120529&rft_dat=%3Cproquest_cross%3E3382198001%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c329t-5e9cec12b79dce011aaab2e21f73ef46fc5d992b8f73d4eee3100e8d63b190a33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1547814072&rft_id=info:pmid/&rft_ieee_id=6850194&rfr_iscdi=true