Loading…

Thermoregulatory plasticity in free-ranging vervet monkeys, Chlorocebus pygerythrus

We used implanted miniature data loggers to obtain the first measurements of body temperature from a free-ranging anthropoid primate. Vervet monkeys ( Chlorocebus pygerythrus ) living in a highly seasonal, semi-arid environment maintained a lower mean 24-h body temperature in winter (34.6 ± 0.5 °C)...

Full description

Saved in:
Bibliographic Details
Published in:Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology Biochemical, systemic, and environmental physiology, 2014-08, Vol.184 (6), p.799-809
Main Authors: Lubbe, Alwyn, Hetem, Robyn S., McFarland, Richard, Barrett, Louise, Henzi, Peter S., Mitchell, Duncan, Meyer, Leith C. R., Maloney, Shane K., Fuller, Andrea
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c508t-d667961bcc087d5838315bc6b727bf64960f3db674d8c35dd0c9a31fb192f0ef3
cites cdi_FETCH-LOGICAL-c508t-d667961bcc087d5838315bc6b727bf64960f3db674d8c35dd0c9a31fb192f0ef3
container_end_page 809
container_issue 6
container_start_page 799
container_title Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology
container_volume 184
creator Lubbe, Alwyn
Hetem, Robyn S.
McFarland, Richard
Barrett, Louise
Henzi, Peter S.
Mitchell, Duncan
Meyer, Leith C. R.
Maloney, Shane K.
Fuller, Andrea
description We used implanted miniature data loggers to obtain the first measurements of body temperature from a free-ranging anthropoid primate. Vervet monkeys ( Chlorocebus pygerythrus ) living in a highly seasonal, semi-arid environment maintained a lower mean 24-h body temperature in winter (34.6 ± 0.5 °C) than in summer (36.2 ± 0.1 °C), and demonstrated increased heterothermy (as indexed by the 24-h amplitude of their body temperature rhythm) in response to proximal environmental stressors. The mean 24-h amplitude of the body temperature rhythm in summer (2.5 ± 0.1 °C) was lower than that in winter (3.2 ± 0.4 °C), with the highest amplitude for an individual monkey (5.6 °C) recorded in winter. The higher amplitude of the body temperature rhythm in winter was a consequence primarily of lower 24-h minimum body temperatures during the nocturnal phase, when monkeys were inactive. These low minimum body temperatures were associated with low black globe temperature (GLMM, β  = 0.046, P  
doi_str_mv 10.1007/s00360-014-0835-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1547814976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3382204771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-d667961bcc087d5838315bc6b727bf64960f3db674d8c35dd0c9a31fb192f0ef3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMo7rr6A7xIwavRSZMm6VEWv2DBgyt4C22adru2TU3ahf57u3QVL57mMM_7DvMgdEnglgCIOw9AOWAgDIOkER6O0JwwGmJC-ccxmgMRDJNIyBk6834LAIxIdopmIYup5DSeo7f1xrjaOlP0VdJZNwRtlfiu1GU3BGUT5M4Y7JKmKJsi2Bm3M11Q2-bTDP4mWG4q66w2ae-DdiiMG7qN6_05OsmTypuLw1yg98eH9fIZr16fXpb3K6wjkB3OOBcxJ6nWIEUWSSopiVLNUxGKNOcs5pDTLOWCZVLTKMtAxwkleUriMAeT0wW6nnpbZ7964zu1tb1rxpOKRExIwmLBR4pMlHbWe2dy1bqyTtygCKi9RjVpVKNGtdeohjFzdWju09pkv4kfbyMQToAfV834-Z_T_7Z-Az6Nf2k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1547814976</pqid></control><display><type>article</type><title>Thermoregulatory plasticity in free-ranging vervet monkeys, Chlorocebus pygerythrus</title><source>Springer Nature</source><creator>Lubbe, Alwyn ; Hetem, Robyn S. ; McFarland, Richard ; Barrett, Louise ; Henzi, Peter S. ; Mitchell, Duncan ; Meyer, Leith C. R. ; Maloney, Shane K. ; Fuller, Andrea</creator><creatorcontrib>Lubbe, Alwyn ; Hetem, Robyn S. ; McFarland, Richard ; Barrett, Louise ; Henzi, Peter S. ; Mitchell, Duncan ; Meyer, Leith C. R. ; Maloney, Shane K. ; Fuller, Andrea</creatorcontrib><description>We used implanted miniature data loggers to obtain the first measurements of body temperature from a free-ranging anthropoid primate. Vervet monkeys ( Chlorocebus pygerythrus ) living in a highly seasonal, semi-arid environment maintained a lower mean 24-h body temperature in winter (34.6 ± 0.5 °C) than in summer (36.2 ± 0.1 °C), and demonstrated increased heterothermy (as indexed by the 24-h amplitude of their body temperature rhythm) in response to proximal environmental stressors. The mean 24-h amplitude of the body temperature rhythm in summer (2.5 ± 0.1 °C) was lower than that in winter (3.2 ± 0.4 °C), with the highest amplitude for an individual monkey (5.6 °C) recorded in winter. The higher amplitude of the body temperature rhythm in winter was a consequence primarily of lower 24-h minimum body temperatures during the nocturnal phase, when monkeys were inactive. These low minimum body temperatures were associated with low black globe temperature (GLMM, β  = 0.046, P  &lt; 0.001), short photoperiod ( β  = 0.010, P  &lt; 0.001) and low rainfall over the previous 2 months, which we used as a proxy for food availability ( β  = 0.001, P  &lt; 0.001). Despite the lower average winter minimum body temperatures, there was no change in the lower modal body temperature between winter and summer. Therefore, unlike the regulated physiological adjustments proposed for torpor or hibernation, these minimum winter body temperatures did not appear to reflect a regulated reduction in body temperature. The thermoregulatory plasticity nevertheless may have fitness benefits for vervet monkeys.</description><identifier>ISSN: 0174-1578</identifier><identifier>EISSN: 1432-136X</identifier><identifier>DOI: 10.1007/s00360-014-0835-y</identifier><identifier>PMID: 24938639</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acclimatization - physiology ; Animal Physiology ; Animals ; Arid environments ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Body temperature ; Body Temperature - physiology ; Body Temperature Regulation - physiology ; Cercopithecinae - physiology ; Circadian Rhythm - physiology ; Climate change ; Environmental stress ; Food ; Food availability ; Hibernation ; Human Physiology ; Life Sciences ; Linear Models ; Metabolism ; Monkeys &amp; apes ; Original Paper ; Photoperiod ; Physiology ; Plasticity ; Primates ; Rain ; Seasons ; Semiarid environments ; South Africa ; Statistics, Nonparametric ; Summer ; Telemetry ; Winter ; Zoology</subject><ispartof>Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology, 2014-08, Vol.184 (6), p.799-809</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-d667961bcc087d5838315bc6b727bf64960f3db674d8c35dd0c9a31fb192f0ef3</citedby><cites>FETCH-LOGICAL-c508t-d667961bcc087d5838315bc6b727bf64960f3db674d8c35dd0c9a31fb192f0ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24938639$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lubbe, Alwyn</creatorcontrib><creatorcontrib>Hetem, Robyn S.</creatorcontrib><creatorcontrib>McFarland, Richard</creatorcontrib><creatorcontrib>Barrett, Louise</creatorcontrib><creatorcontrib>Henzi, Peter S.</creatorcontrib><creatorcontrib>Mitchell, Duncan</creatorcontrib><creatorcontrib>Meyer, Leith C. R.</creatorcontrib><creatorcontrib>Maloney, Shane K.</creatorcontrib><creatorcontrib>Fuller, Andrea</creatorcontrib><title>Thermoregulatory plasticity in free-ranging vervet monkeys, Chlorocebus pygerythrus</title><title>Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology</title><addtitle>J Comp Physiol B</addtitle><addtitle>J Comp Physiol B</addtitle><description>We used implanted miniature data loggers to obtain the first measurements of body temperature from a free-ranging anthropoid primate. Vervet monkeys ( Chlorocebus pygerythrus ) living in a highly seasonal, semi-arid environment maintained a lower mean 24-h body temperature in winter (34.6 ± 0.5 °C) than in summer (36.2 ± 0.1 °C), and demonstrated increased heterothermy (as indexed by the 24-h amplitude of their body temperature rhythm) in response to proximal environmental stressors. The mean 24-h amplitude of the body temperature rhythm in summer (2.5 ± 0.1 °C) was lower than that in winter (3.2 ± 0.4 °C), with the highest amplitude for an individual monkey (5.6 °C) recorded in winter. The higher amplitude of the body temperature rhythm in winter was a consequence primarily of lower 24-h minimum body temperatures during the nocturnal phase, when monkeys were inactive. These low minimum body temperatures were associated with low black globe temperature (GLMM, β  = 0.046, P  &lt; 0.001), short photoperiod ( β  = 0.010, P  &lt; 0.001) and low rainfall over the previous 2 months, which we used as a proxy for food availability ( β  = 0.001, P  &lt; 0.001). Despite the lower average winter minimum body temperatures, there was no change in the lower modal body temperature between winter and summer. Therefore, unlike the regulated physiological adjustments proposed for torpor or hibernation, these minimum winter body temperatures did not appear to reflect a regulated reduction in body temperature. The thermoregulatory plasticity nevertheless may have fitness benefits for vervet monkeys.</description><subject>Acclimatization - physiology</subject><subject>Animal Physiology</subject><subject>Animals</subject><subject>Arid environments</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Body temperature</subject><subject>Body Temperature - physiology</subject><subject>Body Temperature Regulation - physiology</subject><subject>Cercopithecinae - physiology</subject><subject>Circadian Rhythm - physiology</subject><subject>Climate change</subject><subject>Environmental stress</subject><subject>Food</subject><subject>Food availability</subject><subject>Hibernation</subject><subject>Human Physiology</subject><subject>Life Sciences</subject><subject>Linear Models</subject><subject>Metabolism</subject><subject>Monkeys &amp; apes</subject><subject>Original Paper</subject><subject>Photoperiod</subject><subject>Physiology</subject><subject>Plasticity</subject><subject>Primates</subject><subject>Rain</subject><subject>Seasons</subject><subject>Semiarid environments</subject><subject>South Africa</subject><subject>Statistics, Nonparametric</subject><subject>Summer</subject><subject>Telemetry</subject><subject>Winter</subject><subject>Zoology</subject><issn>0174-1578</issn><issn>1432-136X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMo7rr6A7xIwavRSZMm6VEWv2DBgyt4C22adru2TU3ahf57u3QVL57mMM_7DvMgdEnglgCIOw9AOWAgDIOkER6O0JwwGmJC-ccxmgMRDJNIyBk6834LAIxIdopmIYup5DSeo7f1xrjaOlP0VdJZNwRtlfiu1GU3BGUT5M4Y7JKmKJsi2Bm3M11Q2-bTDP4mWG4q66w2ae-DdiiMG7qN6_05OsmTypuLw1yg98eH9fIZr16fXpb3K6wjkB3OOBcxJ6nWIEUWSSopiVLNUxGKNOcs5pDTLOWCZVLTKMtAxwkleUriMAeT0wW6nnpbZ7964zu1tb1rxpOKRExIwmLBR4pMlHbWe2dy1bqyTtygCKi9RjVpVKNGtdeohjFzdWju09pkv4kfbyMQToAfV834-Z_T_7Z-Az6Nf2k</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Lubbe, Alwyn</creator><creator>Hetem, Robyn S.</creator><creator>McFarland, Richard</creator><creator>Barrett, Louise</creator><creator>Henzi, Peter S.</creator><creator>Mitchell, Duncan</creator><creator>Meyer, Leith C. R.</creator><creator>Maloney, Shane K.</creator><creator>Fuller, Andrea</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QR</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope></search><sort><creationdate>20140801</creationdate><title>Thermoregulatory plasticity in free-ranging vervet monkeys, Chlorocebus pygerythrus</title><author>Lubbe, Alwyn ; Hetem, Robyn S. ; McFarland, Richard ; Barrett, Louise ; Henzi, Peter S. ; Mitchell, Duncan ; Meyer, Leith C. R. ; Maloney, Shane K. ; Fuller, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-d667961bcc087d5838315bc6b727bf64960f3db674d8c35dd0c9a31fb192f0ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acclimatization - physiology</topic><topic>Animal Physiology</topic><topic>Animals</topic><topic>Arid environments</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Body temperature</topic><topic>Body Temperature - physiology</topic><topic>Body Temperature Regulation - physiology</topic><topic>Cercopithecinae - physiology</topic><topic>Circadian Rhythm - physiology</topic><topic>Climate change</topic><topic>Environmental stress</topic><topic>Food</topic><topic>Food availability</topic><topic>Hibernation</topic><topic>Human Physiology</topic><topic>Life Sciences</topic><topic>Linear Models</topic><topic>Metabolism</topic><topic>Monkeys &amp; apes</topic><topic>Original Paper</topic><topic>Photoperiod</topic><topic>Physiology</topic><topic>Plasticity</topic><topic>Primates</topic><topic>Rain</topic><topic>Seasons</topic><topic>Semiarid environments</topic><topic>South Africa</topic><topic>Statistics, Nonparametric</topic><topic>Summer</topic><topic>Telemetry</topic><topic>Winter</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lubbe, Alwyn</creatorcontrib><creatorcontrib>Hetem, Robyn S.</creatorcontrib><creatorcontrib>McFarland, Richard</creatorcontrib><creatorcontrib>Barrett, Louise</creatorcontrib><creatorcontrib>Henzi, Peter S.</creatorcontrib><creatorcontrib>Mitchell, Duncan</creatorcontrib><creatorcontrib>Meyer, Leith C. R.</creatorcontrib><creatorcontrib>Maloney, Shane K.</creatorcontrib><creatorcontrib>Fuller, Andrea</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><jtitle>Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lubbe, Alwyn</au><au>Hetem, Robyn S.</au><au>McFarland, Richard</au><au>Barrett, Louise</au><au>Henzi, Peter S.</au><au>Mitchell, Duncan</au><au>Meyer, Leith C. R.</au><au>Maloney, Shane K.</au><au>Fuller, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermoregulatory plasticity in free-ranging vervet monkeys, Chlorocebus pygerythrus</atitle><jtitle>Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology</jtitle><stitle>J Comp Physiol B</stitle><addtitle>J Comp Physiol B</addtitle><date>2014-08-01</date><risdate>2014</risdate><volume>184</volume><issue>6</issue><spage>799</spage><epage>809</epage><pages>799-809</pages><issn>0174-1578</issn><eissn>1432-136X</eissn><abstract>We used implanted miniature data loggers to obtain the first measurements of body temperature from a free-ranging anthropoid primate. Vervet monkeys ( Chlorocebus pygerythrus ) living in a highly seasonal, semi-arid environment maintained a lower mean 24-h body temperature in winter (34.6 ± 0.5 °C) than in summer (36.2 ± 0.1 °C), and demonstrated increased heterothermy (as indexed by the 24-h amplitude of their body temperature rhythm) in response to proximal environmental stressors. The mean 24-h amplitude of the body temperature rhythm in summer (2.5 ± 0.1 °C) was lower than that in winter (3.2 ± 0.4 °C), with the highest amplitude for an individual monkey (5.6 °C) recorded in winter. The higher amplitude of the body temperature rhythm in winter was a consequence primarily of lower 24-h minimum body temperatures during the nocturnal phase, when monkeys were inactive. These low minimum body temperatures were associated with low black globe temperature (GLMM, β  = 0.046, P  &lt; 0.001), short photoperiod ( β  = 0.010, P  &lt; 0.001) and low rainfall over the previous 2 months, which we used as a proxy for food availability ( β  = 0.001, P  &lt; 0.001). Despite the lower average winter minimum body temperatures, there was no change in the lower modal body temperature between winter and summer. Therefore, unlike the regulated physiological adjustments proposed for torpor or hibernation, these minimum winter body temperatures did not appear to reflect a regulated reduction in body temperature. The thermoregulatory plasticity nevertheless may have fitness benefits for vervet monkeys.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>24938639</pmid><doi>10.1007/s00360-014-0835-y</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0174-1578
ispartof Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology, 2014-08, Vol.184 (6), p.799-809
issn 0174-1578
1432-136X
language eng
recordid cdi_proquest_journals_1547814976
source Springer Nature
subjects Acclimatization - physiology
Animal Physiology
Animals
Arid environments
Biochemistry
Biomedical and Life Sciences
Biomedicine
Body temperature
Body Temperature - physiology
Body Temperature Regulation - physiology
Cercopithecinae - physiology
Circadian Rhythm - physiology
Climate change
Environmental stress
Food
Food availability
Hibernation
Human Physiology
Life Sciences
Linear Models
Metabolism
Monkeys & apes
Original Paper
Photoperiod
Physiology
Plasticity
Primates
Rain
Seasons
Semiarid environments
South Africa
Statistics, Nonparametric
Summer
Telemetry
Winter
Zoology
title Thermoregulatory plasticity in free-ranging vervet monkeys, Chlorocebus pygerythrus
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A47%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermoregulatory%20plasticity%20in%20free-ranging%20vervet%20monkeys,%20Chlorocebus%20pygerythrus&rft.jtitle=Journal%20of%20comparative%20physiology.%20B,%20Biochemical,%20systemic,%20and%20environmental%20physiology&rft.au=Lubbe,%20Alwyn&rft.date=2014-08-01&rft.volume=184&rft.issue=6&rft.spage=799&rft.epage=809&rft.pages=799-809&rft.issn=0174-1578&rft.eissn=1432-136X&rft_id=info:doi/10.1007/s00360-014-0835-y&rft_dat=%3Cproquest_cross%3E3382204771%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c508t-d667961bcc087d5838315bc6b727bf64960f3db674d8c35dd0c9a31fb192f0ef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1547814976&rft_id=info:pmid/24938639&rfr_iscdi=true