Loading…
LARS: An Efficient and Scalable Location-Aware Recommender System
This paper proposes LARS*, a location-aware recommender system that uses location-based ratings to produce recommendations. Traditional recommender systems do not consider spatial properties of users nor items; LARS*, on the other hand, supports a taxonomy of three novel classes of location-based ra...
Saved in:
Published in: | IEEE transactions on knowledge and data engineering 2014-06, Vol.26 (6), p.1384-1399 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c321t-3261811372c14d0f60300a11a93e0ded44d68e75a60d841f7edc3ebfe0098b583 |
---|---|
cites | cdi_FETCH-LOGICAL-c321t-3261811372c14d0f60300a11a93e0ded44d68e75a60d841f7edc3ebfe0098b583 |
container_end_page | 1399 |
container_issue | 6 |
container_start_page | 1384 |
container_title | IEEE transactions on knowledge and data engineering |
container_volume | 26 |
creator | Sarwat, Mohamed Levandoski, Justin J. Eldawy, Ahmed Mokbel, Mohamed F. |
description | This paper proposes LARS*, a location-aware recommender system that uses location-based ratings to produce recommendations. Traditional recommender systems do not consider spatial properties of users nor items; LARS*, on the other hand, supports a taxonomy of three novel classes of location-based ratings, namely, spatial ratings for non-spatial items, non-spatial ratings for spatial items, and spatial ratings for spatial items. LARS* exploits user rating locations through user partitioning, a technique that influences recommendations with ratings spatially close to querying users in a manner that maximizes system scalability while not sacrificing recommendation quality. LARS* exploits item locations using travel penalty, a technique that favors recommendation candidates closer in travel distance to querying users in a way that avoids exhaustive access to all spatial items. LARS* can apply these techniques separately, or together, depending on the type of location-based rating available. Experimental evidence using large-scale real-world data from both the Foursquare location-based social network and the MovieLens movie recommendation system reveals that LARS* is efficient, scalable, and capable of producing recommendations twice as accurate compared to existing recommendation approaches. |
doi_str_mv | 10.1109/TKDE.2013.29 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_1549542003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6427747</ieee_id><sourcerecordid>3387986051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-3261811372c14d0f60300a11a93e0ded44d68e75a60d841f7edc3ebfe0098b583</originalsourceid><addsrcrecordid>eNo90E1Lw0AQgOFFFKzVmzcvAa-mzuxushtvocYPDAhtPS_b3QmkNEndpEj_vSkVTzOHhxl4GbtFmCFC9rj6eC5mHFDMeHbGJpgkOuaY4fm4g8RYCqku2VXfbwBAK40Tlpf5YvkU5W1UVFXtamqHyLY-Wjq7testRWXn7FB3bZz_2EDRglzXNNR6CtHy0A_UXLOLym57uvmbU_b1Uqzmb3H5-fo-z8vYCY5DLHiKGlEo7lB6qFIQABbRZoLAk5fSp5pUYlPwWmKlyDtB64oAMr1OtJiy-9PdXei-99QPZtPtQzu-NJjILJEcQIzq4aRc6Po-UGV2oW5sOBgEc4xkjpHMMZLh2cjvTrwmon-aSq6UVOIXz5Jf9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1549542003</pqid></control><display><type>article</type><title>LARS: An Efficient and Scalable Location-Aware Recommender System</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Sarwat, Mohamed ; Levandoski, Justin J. ; Eldawy, Ahmed ; Mokbel, Mohamed F.</creator><creatorcontrib>Sarwat, Mohamed ; Levandoski, Justin J. ; Eldawy, Ahmed ; Mokbel, Mohamed F.</creatorcontrib><description>This paper proposes LARS*, a location-aware recommender system that uses location-based ratings to produce recommendations. Traditional recommender systems do not consider spatial properties of users nor items; LARS*, on the other hand, supports a taxonomy of three novel classes of location-based ratings, namely, spatial ratings for non-spatial items, non-spatial ratings for spatial items, and spatial ratings for spatial items. LARS* exploits user rating locations through user partitioning, a technique that influences recommendations with ratings spatially close to querying users in a manner that maximizes system scalability while not sacrificing recommendation quality. LARS* exploits item locations using travel penalty, a technique that favors recommendation candidates closer in travel distance to querying users in a way that avoids exhaustive access to all spatial items. LARS* can apply these techniques separately, or together, depending on the type of location-based rating available. Experimental evidence using large-scale real-world data from both the Foursquare location-based social network and the MovieLens movie recommendation system reveals that LARS* is efficient, scalable, and capable of producing recommendations twice as accurate compared to existing recommendation approaches.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2013.29</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Collaboration ; Data structures ; Database systems ; Maintenance engineering ; Motion pictures ; Recommender systems ; Scalability</subject><ispartof>IEEE transactions on knowledge and data engineering, 2014-06, Vol.26 (6), p.1384-1399</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-3261811372c14d0f60300a11a93e0ded44d68e75a60d841f7edc3ebfe0098b583</citedby><cites>FETCH-LOGICAL-c321t-3261811372c14d0f60300a11a93e0ded44d68e75a60d841f7edc3ebfe0098b583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6427747$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Sarwat, Mohamed</creatorcontrib><creatorcontrib>Levandoski, Justin J.</creatorcontrib><creatorcontrib>Eldawy, Ahmed</creatorcontrib><creatorcontrib>Mokbel, Mohamed F.</creatorcontrib><title>LARS: An Efficient and Scalable Location-Aware Recommender System</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>This paper proposes LARS*, a location-aware recommender system that uses location-based ratings to produce recommendations. Traditional recommender systems do not consider spatial properties of users nor items; LARS*, on the other hand, supports a taxonomy of three novel classes of location-based ratings, namely, spatial ratings for non-spatial items, non-spatial ratings for spatial items, and spatial ratings for spatial items. LARS* exploits user rating locations through user partitioning, a technique that influences recommendations with ratings spatially close to querying users in a manner that maximizes system scalability while not sacrificing recommendation quality. LARS* exploits item locations using travel penalty, a technique that favors recommendation candidates closer in travel distance to querying users in a way that avoids exhaustive access to all spatial items. LARS* can apply these techniques separately, or together, depending on the type of location-based rating available. Experimental evidence using large-scale real-world data from both the Foursquare location-based social network and the MovieLens movie recommendation system reveals that LARS* is efficient, scalable, and capable of producing recommendations twice as accurate compared to existing recommendation approaches.</description><subject>Collaboration</subject><subject>Data structures</subject><subject>Database systems</subject><subject>Maintenance engineering</subject><subject>Motion pictures</subject><subject>Recommender systems</subject><subject>Scalability</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo90E1Lw0AQgOFFFKzVmzcvAa-mzuxushtvocYPDAhtPS_b3QmkNEndpEj_vSkVTzOHhxl4GbtFmCFC9rj6eC5mHFDMeHbGJpgkOuaY4fm4g8RYCqku2VXfbwBAK40Tlpf5YvkU5W1UVFXtamqHyLY-Wjq7testRWXn7FB3bZz_2EDRglzXNNR6CtHy0A_UXLOLym57uvmbU_b1Uqzmb3H5-fo-z8vYCY5DLHiKGlEo7lB6qFIQABbRZoLAk5fSp5pUYlPwWmKlyDtB64oAMr1OtJiy-9PdXei-99QPZtPtQzu-NJjILJEcQIzq4aRc6Po-UGV2oW5sOBgEc4xkjpHMMZLh2cjvTrwmon-aSq6UVOIXz5Jf9g</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Sarwat, Mohamed</creator><creator>Levandoski, Justin J.</creator><creator>Eldawy, Ahmed</creator><creator>Mokbel, Mohamed F.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140601</creationdate><title>LARS: An Efficient and Scalable Location-Aware Recommender System</title><author>Sarwat, Mohamed ; Levandoski, Justin J. ; Eldawy, Ahmed ; Mokbel, Mohamed F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-3261811372c14d0f60300a11a93e0ded44d68e75a60d841f7edc3ebfe0098b583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Collaboration</topic><topic>Data structures</topic><topic>Database systems</topic><topic>Maintenance engineering</topic><topic>Motion pictures</topic><topic>Recommender systems</topic><topic>Scalability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarwat, Mohamed</creatorcontrib><creatorcontrib>Levandoski, Justin J.</creatorcontrib><creatorcontrib>Eldawy, Ahmed</creatorcontrib><creatorcontrib>Mokbel, Mohamed F.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarwat, Mohamed</au><au>Levandoski, Justin J.</au><au>Eldawy, Ahmed</au><au>Mokbel, Mohamed F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LARS: An Efficient and Scalable Location-Aware Recommender System</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2014-06-01</date><risdate>2014</risdate><volume>26</volume><issue>6</issue><spage>1384</spage><epage>1399</epage><pages>1384-1399</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>This paper proposes LARS*, a location-aware recommender system that uses location-based ratings to produce recommendations. Traditional recommender systems do not consider spatial properties of users nor items; LARS*, on the other hand, supports a taxonomy of three novel classes of location-based ratings, namely, spatial ratings for non-spatial items, non-spatial ratings for spatial items, and spatial ratings for spatial items. LARS* exploits user rating locations through user partitioning, a technique that influences recommendations with ratings spatially close to querying users in a manner that maximizes system scalability while not sacrificing recommendation quality. LARS* exploits item locations using travel penalty, a technique that favors recommendation candidates closer in travel distance to querying users in a way that avoids exhaustive access to all spatial items. LARS* can apply these techniques separately, or together, depending on the type of location-based rating available. Experimental evidence using large-scale real-world data from both the Foursquare location-based social network and the MovieLens movie recommendation system reveals that LARS* is efficient, scalable, and capable of producing recommendations twice as accurate compared to existing recommendation approaches.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2013.29</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1041-4347 |
ispartof | IEEE transactions on knowledge and data engineering, 2014-06, Vol.26 (6), p.1384-1399 |
issn | 1041-4347 1558-2191 |
language | eng |
recordid | cdi_proquest_journals_1549542003 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Collaboration Data structures Database systems Maintenance engineering Motion pictures Recommender systems Scalability |
title | LARS: An Efficient and Scalable Location-Aware Recommender System |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A18%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LARS:%20An%20Efficient%20and%20Scalable%20Location-Aware%20Recommender%20System&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Sarwat,%20Mohamed&rft.date=2014-06-01&rft.volume=26&rft.issue=6&rft.spage=1384&rft.epage=1399&rft.pages=1384-1399&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2013.29&rft_dat=%3Cproquest_ieee_%3E3387986051%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c321t-3261811372c14d0f60300a11a93e0ded44d68e75a60d841f7edc3ebfe0098b583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1549542003&rft_id=info:pmid/&rft_ieee_id=6427747&rfr_iscdi=true |