Loading…
Optimization of Actinide Quantification by Electron Probe Microanalysis
Conventional quantitative electron probe microanalysis of actinides requires the use of reference standard samples. However, for such elements, standards are generally not available. To overcome this difficulty, standardless methods of analysis are used, in which the x-ray intensity emitted by the s...
Saved in:
Published in: | IEEE transactions on nuclear science 2014-08, Vol.61 (4), p.1977-1983 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Conventional quantitative electron probe microanalysis of actinides requires the use of reference standard samples. However, for such elements, standards are generally not available. To overcome this difficulty, standardless methods of analysis are used, in which the x-ray intensity emitted by the standard is calculated. To be reliable, such calculations require accurate knowledge of physical data such as the x-ray production cross section. However, experimental data of this quantity are not always available for actinide elements. In the present work, experimental L and M x-ray production cross sections were measured for elements uranium and lead. Measurements were performed with two electron microprobes using wavelength-dispersive spectrometers using thin self-supporting targets. Experimental results are compared with calculated cross sections obtained from different analytical formulae, and, whenever possible, with experimental data obtained from the literature. |
---|---|
ISSN: | 0018-9499 1558-1578 |
DOI: | 10.1109/TNS.2014.2321016 |