Loading…
Uniform Sobolev estimates for non-trapping metrics
We prove uniform Sobolev estimates $\Vert u\Vert _{{L}^{p\prime } } \leq C\Vert (\Delta - \alpha )u\Vert _{{L}^{p} } $ for $\alpha \in \mathbb{C} $ and $p= 2n/ (n+ 2), {p}^{\prime } = 2n/ (n- 2)$ on non-trapping asymptotically conic manifolds of dimension $n\geq 3$ , generalizing to non-constant coe...
Saved in:
Published in: | Journal of the Institute of Mathematics of Jussieu 2014-07, Vol.13 (3), p.599-632 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We prove uniform Sobolev estimates
$\Vert u\Vert _{{L}^{p\prime } } \leq C\Vert (\Delta - \alpha )u\Vert _{{L}^{p} } $
for
$\alpha \in \mathbb{C} $
and
$p= 2n/ (n+ 2), {p}^{\prime } = 2n/ (n- 2)$
on non-trapping asymptotically conic manifolds of dimension
$n\geq 3$
, generalizing to non-constant coefficient Laplacians a result of
Kenig, Ruiz and Sogge [13]. |
---|---|
ISSN: | 1474-7480 1475-3030 |
DOI: | 10.1017/S1474748013000273 |