Loading…

Complete low-barrier side-chain route for olefin formation during methanol conversion in H-SAPO-34

A first-principle kinetic study reveals a full low-barrier catalytic cycle for both ethene and propene during methanol conversion in H-SAPO-34. Starting from hexamethylbenzene trapped in the catalyst, an alkyl chain grows and can be eliminated in a water-assisted reaction step. [Display omitted] •A...

Full description

Saved in:
Bibliographic Details
Published in:Journal of catalysis 2013-09, Vol.305, p.76-80
Main Authors: De Wispelaere, Kristof, Hemelsoet, Karen, Waroquier, Michel, Van Speybroeck, Veronique
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c491t-fa34623b57b9f378fdd4de01e506bc077c6f2128e9612250615d233a303b01e23
cites cdi_FETCH-LOGICAL-c491t-fa34623b57b9f378fdd4de01e506bc077c6f2128e9612250615d233a303b01e23
container_end_page 80
container_issue
container_start_page 76
container_title Journal of catalysis
container_volume 305
creator De Wispelaere, Kristof
Hemelsoet, Karen
Waroquier, Michel
Van Speybroeck, Veronique
description A first-principle kinetic study reveals a full low-barrier catalytic cycle for both ethene and propene during methanol conversion in H-SAPO-34. Starting from hexamethylbenzene trapped in the catalyst, an alkyl chain grows and can be eliminated in a water-assisted reaction step. [Display omitted] •A low-barrier path for olefin formation in H-SAPO-34 is found.•Reaction cycle based on the side-chain mechanism starting from HMB.•All free energy barriers below 100kJ/mol.•Non-bonding interactions and water assistance.•Impulse for further experimental and theoretical studies. The methanol to olefins process is an alternative for oil-based production of ethene and propene. However, detailed information on the reaction mechanisms of olefin formation in different zeolite is lacking. Herein, a first-principle kinetic study allows elucidating the importance of a side-chain mechanism during methanol conversion in H-SAPO-34. Starting from the experimentally observed hexamethylbenzene, a full low-barrier catalytic cycle for ethene and propene formation is found. The olefin elimination steps exhibit low free energy barriers due to a subtle interplay between a sp3 carbon center of the organic intermediate, stabilizing non-bonding interactions and assisting water molecules in the zeolite material.
doi_str_mv 10.1016/j.jcat.2013.04.015
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1554966908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021951713001383</els_id><sourcerecordid>3408819431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-fa34623b57b9f378fdd4de01e506bc077c6f2128e9612250615d233a303b01e23</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVpodtt_0AvNZQe5Yw-bUEvYWmbQCCFNGchy1Ii47W2kjel_76zbOgxuoyYeeYd6R1CPjJoGTB9MbWTd2vLgYkWZAtMvSIbBgYo10a-JhsAzqhRrHtL3tU6ATCmVL8hwy7vD3NYQzPnP3RwpaRQmprGQP2jS0tT8hGLMZcmzyFiAq97t6a8NOOxpOWh2Yf10S15bnxenkKppxJyV_Tu8uctFfI9eRPdXMOH57gl99-__dpd0ZvbH9e7yxvqpWErjU5IzcWgusFE0fVxHOUYgAUFevDQdV5HzngfjGacY5KpkQvhBIgBKS625PNZ91Dy72Ooq53ysSw40uJfpdHaQP8iJYzRXa9QcUv4mfIl11pCtIeS9q78tQzsyXE72ZPj9uS4BWnRcWz68iztqndzLG7xqf7v5J3qWA8dcp_OXHTZuoeCzP0dCmnAI7nSSHw9EwH9esKN2OpTWHwYUwl-tWNOLz3kH7CSnYY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1399678530</pqid></control><display><type>article</type><title>Complete low-barrier side-chain route for olefin formation during methanol conversion in H-SAPO-34</title><source>ScienceDirect Freedom Collection</source><creator>De Wispelaere, Kristof ; Hemelsoet, Karen ; Waroquier, Michel ; Van Speybroeck, Veronique</creator><creatorcontrib>De Wispelaere, Kristof ; Hemelsoet, Karen ; Waroquier, Michel ; Van Speybroeck, Veronique</creatorcontrib><description>A first-principle kinetic study reveals a full low-barrier catalytic cycle for both ethene and propene during methanol conversion in H-SAPO-34. Starting from hexamethylbenzene trapped in the catalyst, an alkyl chain grows and can be eliminated in a water-assisted reaction step. [Display omitted] •A low-barrier path for olefin formation in H-SAPO-34 is found.•Reaction cycle based on the side-chain mechanism starting from HMB.•All free energy barriers below 100kJ/mol.•Non-bonding interactions and water assistance.•Impulse for further experimental and theoretical studies. The methanol to olefins process is an alternative for oil-based production of ethene and propene. However, detailed information on the reaction mechanisms of olefin formation in different zeolite is lacking. Herein, a first-principle kinetic study allows elucidating the importance of a side-chain mechanism during methanol conversion in H-SAPO-34. Starting from the experimentally observed hexamethylbenzene, a full low-barrier catalytic cycle for ethene and propene formation is found. The olefin elimination steps exhibit low free energy barriers due to a subtle interplay between a sp3 carbon center of the organic intermediate, stabilizing non-bonding interactions and assisting water molecules in the zeolite material.</description><identifier>ISSN: 0021-9517</identifier><identifier>EISSN: 1090-2694</identifier><identifier>DOI: 10.1016/j.jcat.2013.04.015</identifier><identifier>CODEN: JCTLA5</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>carbon ; Catalysis ; Chemical reactions ; Chemistry ; energy ; ethylene ; ethylene production ; Exact sciences and technology ; First-principle kinetics ; General and physical chemistry ; H-SAPO-34 ; Heterogeneous catalysis ; Ion-exchange ; Kinetics ; Methanol ; Methanol to olefin ; olefin ; propylene ; reaction mechanisms ; Side-chain mechanism ; Surface physical chemistry ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry ; Zeolites ; Zeolites: preparations and properties</subject><ispartof>Journal of catalysis, 2013-09, Vol.305, p.76-80</ispartof><rights>2013 Elsevier Inc.</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2013 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-fa34623b57b9f378fdd4de01e506bc077c6f2128e9612250615d233a303b01e23</citedby><cites>FETCH-LOGICAL-c491t-fa34623b57b9f378fdd4de01e506bc077c6f2128e9612250615d233a303b01e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27571807$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>De Wispelaere, Kristof</creatorcontrib><creatorcontrib>Hemelsoet, Karen</creatorcontrib><creatorcontrib>Waroquier, Michel</creatorcontrib><creatorcontrib>Van Speybroeck, Veronique</creatorcontrib><title>Complete low-barrier side-chain route for olefin formation during methanol conversion in H-SAPO-34</title><title>Journal of catalysis</title><description>A first-principle kinetic study reveals a full low-barrier catalytic cycle for both ethene and propene during methanol conversion in H-SAPO-34. Starting from hexamethylbenzene trapped in the catalyst, an alkyl chain grows and can be eliminated in a water-assisted reaction step. [Display omitted] •A low-barrier path for olefin formation in H-SAPO-34 is found.•Reaction cycle based on the side-chain mechanism starting from HMB.•All free energy barriers below 100kJ/mol.•Non-bonding interactions and water assistance.•Impulse for further experimental and theoretical studies. The methanol to olefins process is an alternative for oil-based production of ethene and propene. However, detailed information on the reaction mechanisms of olefin formation in different zeolite is lacking. Herein, a first-principle kinetic study allows elucidating the importance of a side-chain mechanism during methanol conversion in H-SAPO-34. Starting from the experimentally observed hexamethylbenzene, a full low-barrier catalytic cycle for ethene and propene formation is found. The olefin elimination steps exhibit low free energy barriers due to a subtle interplay between a sp3 carbon center of the organic intermediate, stabilizing non-bonding interactions and assisting water molecules in the zeolite material.</description><subject>carbon</subject><subject>Catalysis</subject><subject>Chemical reactions</subject><subject>Chemistry</subject><subject>energy</subject><subject>ethylene</subject><subject>ethylene production</subject><subject>Exact sciences and technology</subject><subject>First-principle kinetics</subject><subject>General and physical chemistry</subject><subject>H-SAPO-34</subject><subject>Heterogeneous catalysis</subject><subject>Ion-exchange</subject><subject>Kinetics</subject><subject>Methanol</subject><subject>Methanol to olefin</subject><subject>olefin</subject><subject>propylene</subject><subject>reaction mechanisms</subject><subject>Side-chain mechanism</subject><subject>Surface physical chemistry</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><subject>Zeolites</subject><subject>Zeolites: preparations and properties</subject><issn>0021-9517</issn><issn>1090-2694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kU1r3DAQhkVpodtt_0AvNZQe5Yw-bUEvYWmbQCCFNGchy1Ii47W2kjel_76zbOgxuoyYeeYd6R1CPjJoGTB9MbWTd2vLgYkWZAtMvSIbBgYo10a-JhsAzqhRrHtL3tU6ATCmVL8hwy7vD3NYQzPnP3RwpaRQmprGQP2jS0tT8hGLMZcmzyFiAq97t6a8NOOxpOWh2Yf10S15bnxenkKppxJyV_Tu8uctFfI9eRPdXMOH57gl99-__dpd0ZvbH9e7yxvqpWErjU5IzcWgusFE0fVxHOUYgAUFevDQdV5HzngfjGacY5KpkQvhBIgBKS625PNZ91Dy72Ooq53ysSw40uJfpdHaQP8iJYzRXa9QcUv4mfIl11pCtIeS9q78tQzsyXE72ZPj9uS4BWnRcWz68iztqndzLG7xqf7v5J3qWA8dcp_OXHTZuoeCzP0dCmnAI7nSSHw9EwH9esKN2OpTWHwYUwl-tWNOLz3kH7CSnYY</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>De Wispelaere, Kristof</creator><creator>Hemelsoet, Karen</creator><creator>Waroquier, Michel</creator><creator>Van Speybroeck, Veronique</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Elsevier BV</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130901</creationdate><title>Complete low-barrier side-chain route for olefin formation during methanol conversion in H-SAPO-34</title><author>De Wispelaere, Kristof ; Hemelsoet, Karen ; Waroquier, Michel ; Van Speybroeck, Veronique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-fa34623b57b9f378fdd4de01e506bc077c6f2128e9612250615d233a303b01e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>carbon</topic><topic>Catalysis</topic><topic>Chemical reactions</topic><topic>Chemistry</topic><topic>energy</topic><topic>ethylene</topic><topic>ethylene production</topic><topic>Exact sciences and technology</topic><topic>First-principle kinetics</topic><topic>General and physical chemistry</topic><topic>H-SAPO-34</topic><topic>Heterogeneous catalysis</topic><topic>Ion-exchange</topic><topic>Kinetics</topic><topic>Methanol</topic><topic>Methanol to olefin</topic><topic>olefin</topic><topic>propylene</topic><topic>reaction mechanisms</topic><topic>Side-chain mechanism</topic><topic>Surface physical chemistry</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><topic>Zeolites</topic><topic>Zeolites: preparations and properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Wispelaere, Kristof</creatorcontrib><creatorcontrib>Hemelsoet, Karen</creatorcontrib><creatorcontrib>Waroquier, Michel</creatorcontrib><creatorcontrib>Van Speybroeck, Veronique</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Wispelaere, Kristof</au><au>Hemelsoet, Karen</au><au>Waroquier, Michel</au><au>Van Speybroeck, Veronique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complete low-barrier side-chain route for olefin formation during methanol conversion in H-SAPO-34</atitle><jtitle>Journal of catalysis</jtitle><date>2013-09-01</date><risdate>2013</risdate><volume>305</volume><spage>76</spage><epage>80</epage><pages>76-80</pages><issn>0021-9517</issn><eissn>1090-2694</eissn><coden>JCTLA5</coden><abstract>A first-principle kinetic study reveals a full low-barrier catalytic cycle for both ethene and propene during methanol conversion in H-SAPO-34. Starting from hexamethylbenzene trapped in the catalyst, an alkyl chain grows and can be eliminated in a water-assisted reaction step. [Display omitted] •A low-barrier path for olefin formation in H-SAPO-34 is found.•Reaction cycle based on the side-chain mechanism starting from HMB.•All free energy barriers below 100kJ/mol.•Non-bonding interactions and water assistance.•Impulse for further experimental and theoretical studies. The methanol to olefins process is an alternative for oil-based production of ethene and propene. However, detailed information on the reaction mechanisms of olefin formation in different zeolite is lacking. Herein, a first-principle kinetic study allows elucidating the importance of a side-chain mechanism during methanol conversion in H-SAPO-34. Starting from the experimentally observed hexamethylbenzene, a full low-barrier catalytic cycle for ethene and propene formation is found. The olefin elimination steps exhibit low free energy barriers due to a subtle interplay between a sp3 carbon center of the organic intermediate, stabilizing non-bonding interactions and assisting water molecules in the zeolite material.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcat.2013.04.015</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9517
ispartof Journal of catalysis, 2013-09, Vol.305, p.76-80
issn 0021-9517
1090-2694
language eng
recordid cdi_proquest_journals_1554966908
source ScienceDirect Freedom Collection
subjects carbon
Catalysis
Chemical reactions
Chemistry
energy
ethylene
ethylene production
Exact sciences and technology
First-principle kinetics
General and physical chemistry
H-SAPO-34
Heterogeneous catalysis
Ion-exchange
Kinetics
Methanol
Methanol to olefin
olefin
propylene
reaction mechanisms
Side-chain mechanism
Surface physical chemistry
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
Zeolites
Zeolites: preparations and properties
title Complete low-barrier side-chain route for olefin formation during methanol conversion in H-SAPO-34
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A37%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complete%20low-barrier%20side-chain%20route%20for%20olefin%20formation%20during%20methanol%20conversion%20in%20H-SAPO-34&rft.jtitle=Journal%20of%20catalysis&rft.au=De%20Wispelaere,%20Kristof&rft.date=2013-09-01&rft.volume=305&rft.spage=76&rft.epage=80&rft.pages=76-80&rft.issn=0021-9517&rft.eissn=1090-2694&rft.coden=JCTLA5&rft_id=info:doi/10.1016/j.jcat.2013.04.015&rft_dat=%3Cproquest_cross%3E3408819431%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c491t-fa34623b57b9f378fdd4de01e506bc077c6f2128e9612250615d233a303b01e23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1399678530&rft_id=info:pmid/&rfr_iscdi=true