Loading…

Maximizing the Efficiency of Multienzyme Process by Stoichiometry Optimization

Multienzyme processes represent an important area of biocatalysis. Their efficiency can be enhanced by optimization of the stoichiometry of the biocatalysts. Here we present a workflow for maximizing the efficiency of a three‐enzyme system catalyzing a five‐step chemical conversion. Kinetic models o...

Full description

Saved in:
Bibliographic Details
Published in:Chembiochem : a European journal of chemical biology 2014-09, Vol.15 (13), p.1891-1895
Main Authors: Dvorak, Pavel, Kurumbang, Nagendra P., Bendl, Jaroslav, Brezovsky, Jan, Prokop, Zbynek, Damborsky, Jiri
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c6545-75f6d294eceef51e2aa845d301ecc771a424e969656748fbbc214d7b71ca8573
cites cdi_FETCH-LOGICAL-c6545-75f6d294eceef51e2aa845d301ecc771a424e969656748fbbc214d7b71ca8573
container_end_page 1895
container_issue 13
container_start_page 1891
container_title Chembiochem : a European journal of chemical biology
container_volume 15
creator Dvorak, Pavel
Kurumbang, Nagendra P.
Bendl, Jaroslav
Brezovsky, Jan
Prokop, Zbynek
Damborsky, Jiri
description Multienzyme processes represent an important area of biocatalysis. Their efficiency can be enhanced by optimization of the stoichiometry of the biocatalysts. Here we present a workflow for maximizing the efficiency of a three‐enzyme system catalyzing a five‐step chemical conversion. Kinetic models of pathways with wild‐type or engineered enzymes were built, and the enzyme stoichiometry of each pathway was optimized. Mathematical modeling and one‐pot multienzyme experiments provided detailed insights into pathway dynamics, enabled the selection of a suitable engineered enzyme, and afforded high efficiency while minimizing biocatalyst loadings. Optimizing the stoichiometry in a pathway with an engineered enzyme reduced the total biocatalyst load by an impressive 56 %. Our new workflow represents a broadly applicable strategy for optimizing multienzyme processes. Recipe for success: We propose a workflow for optimizing complex multienzyme reactions by kinetic modeling and stoichiometry optimization. By using a three‐enzyme system catalyzing a five‐step chemical conversion we show that selection of suitable enzymes and stoichiometry optimization can greatly reduce biocatalyst loadings. This work highlights the potential of kinetic modeling for optimizing industrial biocatalytic processes.
doi_str_mv 10.1002/cbic.201402265
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1557571596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3415674661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6545-75f6d294eceef51e2aa845d301ecc771a424e969656748fbbc214d7b71ca8573</originalsourceid><addsrcrecordid>eNqFkEtPAjEURhujEUW3Ls0krgfbTh_MUggiCQ8VEpZNp9yRIsNgO0SGX-8QkLhz1dvkfOfmfgjdEdwgGNNHk1jToJgwTKngZ-iKsCgOpYii8-PMKJU1dO39AmMci4hcohrlOI6JxFdoONBbm9mdXX0ExRyCTppaY2FlyiBPg8FmWVSfXZlB8OpyA94HSRmMi9yauc0zKFwZjNbF3qALm69u0EWqlx5uj28dTZ47k_ZL2B91e-2nfmgEZzyUPBUzGjMwACknQLVuMj6LMAFjpCSaUQaxiAUXkjXTJDGUsJlMJDG6yWVURw8H7drlXxvwhVrkG7eqNirCueSS8OrSOmocKONy7x2kau1spl2pCFb79tS-PXVqrwrcH7WbJIPZCf-tqwLiA_Btl1D-o1PtVq_9Vx4estYXsD1ltftUQkaSq-mwq-S49TaV5F1Noh-9EIss</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1557571596</pqid></control><display><type>article</type><title>Maximizing the Efficiency of Multienzyme Process by Stoichiometry Optimization</title><source>Wiley</source><creator>Dvorak, Pavel ; Kurumbang, Nagendra P. ; Bendl, Jaroslav ; Brezovsky, Jan ; Prokop, Zbynek ; Damborsky, Jiri</creator><creatorcontrib>Dvorak, Pavel ; Kurumbang, Nagendra P. ; Bendl, Jaroslav ; Brezovsky, Jan ; Prokop, Zbynek ; Damborsky, Jiri</creatorcontrib><description>Multienzyme processes represent an important area of biocatalysis. Their efficiency can be enhanced by optimization of the stoichiometry of the biocatalysts. Here we present a workflow for maximizing the efficiency of a three‐enzyme system catalyzing a five‐step chemical conversion. Kinetic models of pathways with wild‐type or engineered enzymes were built, and the enzyme stoichiometry of each pathway was optimized. Mathematical modeling and one‐pot multienzyme experiments provided detailed insights into pathway dynamics, enabled the selection of a suitable engineered enzyme, and afforded high efficiency while minimizing biocatalyst loadings. Optimizing the stoichiometry in a pathway with an engineered enzyme reduced the total biocatalyst load by an impressive 56 %. Our new workflow represents a broadly applicable strategy for optimizing multienzyme processes. Recipe for success: We propose a workflow for optimizing complex multienzyme reactions by kinetic modeling and stoichiometry optimization. By using a three‐enzyme system catalyzing a five‐step chemical conversion we show that selection of suitable enzymes and stoichiometry optimization can greatly reduce biocatalyst loadings. This work highlights the potential of kinetic modeling for optimizing industrial biocatalytic processes.</description><identifier>ISSN: 1439-4227</identifier><identifier>EISSN: 1439-7633</identifier><identifier>DOI: 10.1002/cbic.201402265</identifier><identifier>PMID: 25099170</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Algorithms ; Biocatalysis ; Biocatalysts ; biotransformations ; Efficiency ; Enzymes ; Enzymes - chemistry ; kinetic modeling ; Kinetics ; Models, Chemical ; multienzyme reaction ; Optimization ; Protein Engineering ; stoichiometry optimization ; Workflow</subject><ispartof>Chembiochem : a European journal of chemical biology, 2014-09, Vol.15 (13), p.1891-1895</ispartof><rights>2014 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2014 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2014 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6545-75f6d294eceef51e2aa845d301ecc771a424e969656748fbbc214d7b71ca8573</citedby><cites>FETCH-LOGICAL-c6545-75f6d294eceef51e2aa845d301ecc771a424e969656748fbbc214d7b71ca8573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25099170$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dvorak, Pavel</creatorcontrib><creatorcontrib>Kurumbang, Nagendra P.</creatorcontrib><creatorcontrib>Bendl, Jaroslav</creatorcontrib><creatorcontrib>Brezovsky, Jan</creatorcontrib><creatorcontrib>Prokop, Zbynek</creatorcontrib><creatorcontrib>Damborsky, Jiri</creatorcontrib><title>Maximizing the Efficiency of Multienzyme Process by Stoichiometry Optimization</title><title>Chembiochem : a European journal of chemical biology</title><addtitle>ChemBioChem</addtitle><description>Multienzyme processes represent an important area of biocatalysis. Their efficiency can be enhanced by optimization of the stoichiometry of the biocatalysts. Here we present a workflow for maximizing the efficiency of a three‐enzyme system catalyzing a five‐step chemical conversion. Kinetic models of pathways with wild‐type or engineered enzymes were built, and the enzyme stoichiometry of each pathway was optimized. Mathematical modeling and one‐pot multienzyme experiments provided detailed insights into pathway dynamics, enabled the selection of a suitable engineered enzyme, and afforded high efficiency while minimizing biocatalyst loadings. Optimizing the stoichiometry in a pathway with an engineered enzyme reduced the total biocatalyst load by an impressive 56 %. Our new workflow represents a broadly applicable strategy for optimizing multienzyme processes. Recipe for success: We propose a workflow for optimizing complex multienzyme reactions by kinetic modeling and stoichiometry optimization. By using a three‐enzyme system catalyzing a five‐step chemical conversion we show that selection of suitable enzymes and stoichiometry optimization can greatly reduce biocatalyst loadings. This work highlights the potential of kinetic modeling for optimizing industrial biocatalytic processes.</description><subject>Algorithms</subject><subject>Biocatalysis</subject><subject>Biocatalysts</subject><subject>biotransformations</subject><subject>Efficiency</subject><subject>Enzymes</subject><subject>Enzymes - chemistry</subject><subject>kinetic modeling</subject><subject>Kinetics</subject><subject>Models, Chemical</subject><subject>multienzyme reaction</subject><subject>Optimization</subject><subject>Protein Engineering</subject><subject>stoichiometry optimization</subject><subject>Workflow</subject><issn>1439-4227</issn><issn>1439-7633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPAjEURhujEUW3Ls0krgfbTh_MUggiCQ8VEpZNp9yRIsNgO0SGX-8QkLhz1dvkfOfmfgjdEdwgGNNHk1jToJgwTKngZ-iKsCgOpYii8-PMKJU1dO39AmMci4hcohrlOI6JxFdoONBbm9mdXX0ExRyCTppaY2FlyiBPg8FmWVSfXZlB8OpyA94HSRmMi9yauc0zKFwZjNbF3qALm69u0EWqlx5uj28dTZ47k_ZL2B91e-2nfmgEZzyUPBUzGjMwACknQLVuMj6LMAFjpCSaUQaxiAUXkjXTJDGUsJlMJDG6yWVURw8H7drlXxvwhVrkG7eqNirCueSS8OrSOmocKONy7x2kau1spl2pCFb79tS-PXVqrwrcH7WbJIPZCf-tqwLiA_Btl1D-o1PtVq_9Vx4estYXsD1ltftUQkaSq-mwq-S49TaV5F1Noh-9EIss</recordid><startdate>20140905</startdate><enddate>20140905</enddate><creator>Dvorak, Pavel</creator><creator>Kurumbang, Nagendra P.</creator><creator>Bendl, Jaroslav</creator><creator>Brezovsky, Jan</creator><creator>Prokop, Zbynek</creator><creator>Damborsky, Jiri</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>20140905</creationdate><title>Maximizing the Efficiency of Multienzyme Process by Stoichiometry Optimization</title><author>Dvorak, Pavel ; Kurumbang, Nagendra P. ; Bendl, Jaroslav ; Brezovsky, Jan ; Prokop, Zbynek ; Damborsky, Jiri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6545-75f6d294eceef51e2aa845d301ecc771a424e969656748fbbc214d7b71ca8573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Biocatalysis</topic><topic>Biocatalysts</topic><topic>biotransformations</topic><topic>Efficiency</topic><topic>Enzymes</topic><topic>Enzymes - chemistry</topic><topic>kinetic modeling</topic><topic>Kinetics</topic><topic>Models, Chemical</topic><topic>multienzyme reaction</topic><topic>Optimization</topic><topic>Protein Engineering</topic><topic>stoichiometry optimization</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dvorak, Pavel</creatorcontrib><creatorcontrib>Kurumbang, Nagendra P.</creatorcontrib><creatorcontrib>Bendl, Jaroslav</creatorcontrib><creatorcontrib>Brezovsky, Jan</creatorcontrib><creatorcontrib>Prokop, Zbynek</creatorcontrib><creatorcontrib>Damborsky, Jiri</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Chembiochem : a European journal of chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dvorak, Pavel</au><au>Kurumbang, Nagendra P.</au><au>Bendl, Jaroslav</au><au>Brezovsky, Jan</au><au>Prokop, Zbynek</au><au>Damborsky, Jiri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximizing the Efficiency of Multienzyme Process by Stoichiometry Optimization</atitle><jtitle>Chembiochem : a European journal of chemical biology</jtitle><addtitle>ChemBioChem</addtitle><date>2014-09-05</date><risdate>2014</risdate><volume>15</volume><issue>13</issue><spage>1891</spage><epage>1895</epage><pages>1891-1895</pages><issn>1439-4227</issn><eissn>1439-7633</eissn><abstract>Multienzyme processes represent an important area of biocatalysis. Their efficiency can be enhanced by optimization of the stoichiometry of the biocatalysts. Here we present a workflow for maximizing the efficiency of a three‐enzyme system catalyzing a five‐step chemical conversion. Kinetic models of pathways with wild‐type or engineered enzymes were built, and the enzyme stoichiometry of each pathway was optimized. Mathematical modeling and one‐pot multienzyme experiments provided detailed insights into pathway dynamics, enabled the selection of a suitable engineered enzyme, and afforded high efficiency while minimizing biocatalyst loadings. Optimizing the stoichiometry in a pathway with an engineered enzyme reduced the total biocatalyst load by an impressive 56 %. Our new workflow represents a broadly applicable strategy for optimizing multienzyme processes. Recipe for success: We propose a workflow for optimizing complex multienzyme reactions by kinetic modeling and stoichiometry optimization. By using a three‐enzyme system catalyzing a five‐step chemical conversion we show that selection of suitable enzymes and stoichiometry optimization can greatly reduce biocatalyst loadings. This work highlights the potential of kinetic modeling for optimizing industrial biocatalytic processes.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>25099170</pmid><doi>10.1002/cbic.201402265</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1439-4227
ispartof Chembiochem : a European journal of chemical biology, 2014-09, Vol.15 (13), p.1891-1895
issn 1439-4227
1439-7633
language eng
recordid cdi_proquest_journals_1557571596
source Wiley
subjects Algorithms
Biocatalysis
Biocatalysts
biotransformations
Efficiency
Enzymes
Enzymes - chemistry
kinetic modeling
Kinetics
Models, Chemical
multienzyme reaction
Optimization
Protein Engineering
stoichiometry optimization
Workflow
title Maximizing the Efficiency of Multienzyme Process by Stoichiometry Optimization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A13%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximizing%20the%20Efficiency%20of%20Multienzyme%20Process%20by%20Stoichiometry%20Optimization&rft.jtitle=Chembiochem%20:%20a%20European%20journal%20of%20chemical%20biology&rft.au=Dvorak,%20Pavel&rft.date=2014-09-05&rft.volume=15&rft.issue=13&rft.spage=1891&rft.epage=1895&rft.pages=1891-1895&rft.issn=1439-4227&rft.eissn=1439-7633&rft_id=info:doi/10.1002/cbic.201402265&rft_dat=%3Cproquest_cross%3E3415674661%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6545-75f6d294eceef51e2aa845d301ecc771a424e969656748fbbc214d7b71ca8573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1557571596&rft_id=info:pmid/25099170&rfr_iscdi=true