Loading…
Maximizing the Efficiency of Multienzyme Process by Stoichiometry Optimization
Multienzyme processes represent an important area of biocatalysis. Their efficiency can be enhanced by optimization of the stoichiometry of the biocatalysts. Here we present a workflow for maximizing the efficiency of a three‐enzyme system catalyzing a five‐step chemical conversion. Kinetic models o...
Saved in:
Published in: | Chembiochem : a European journal of chemical biology 2014-09, Vol.15 (13), p.1891-1895 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c6545-75f6d294eceef51e2aa845d301ecc771a424e969656748fbbc214d7b71ca8573 |
---|---|
cites | cdi_FETCH-LOGICAL-c6545-75f6d294eceef51e2aa845d301ecc771a424e969656748fbbc214d7b71ca8573 |
container_end_page | 1895 |
container_issue | 13 |
container_start_page | 1891 |
container_title | Chembiochem : a European journal of chemical biology |
container_volume | 15 |
creator | Dvorak, Pavel Kurumbang, Nagendra P. Bendl, Jaroslav Brezovsky, Jan Prokop, Zbynek Damborsky, Jiri |
description | Multienzyme processes represent an important area of biocatalysis. Their efficiency can be enhanced by optimization of the stoichiometry of the biocatalysts. Here we present a workflow for maximizing the efficiency of a three‐enzyme system catalyzing a five‐step chemical conversion. Kinetic models of pathways with wild‐type or engineered enzymes were built, and the enzyme stoichiometry of each pathway was optimized. Mathematical modeling and one‐pot multienzyme experiments provided detailed insights into pathway dynamics, enabled the selection of a suitable engineered enzyme, and afforded high efficiency while minimizing biocatalyst loadings. Optimizing the stoichiometry in a pathway with an engineered enzyme reduced the total biocatalyst load by an impressive 56 %. Our new workflow represents a broadly applicable strategy for optimizing multienzyme processes.
Recipe for success: We propose a workflow for optimizing complex multienzyme reactions by kinetic modeling and stoichiometry optimization. By using a three‐enzyme system catalyzing a five‐step chemical conversion we show that selection of suitable enzymes and stoichiometry optimization can greatly reduce biocatalyst loadings. This work highlights the potential of kinetic modeling for optimizing industrial biocatalytic processes. |
doi_str_mv | 10.1002/cbic.201402265 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1557571596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3415674661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6545-75f6d294eceef51e2aa845d301ecc771a424e969656748fbbc214d7b71ca8573</originalsourceid><addsrcrecordid>eNqFkEtPAjEURhujEUW3Ls0krgfbTh_MUggiCQ8VEpZNp9yRIsNgO0SGX-8QkLhz1dvkfOfmfgjdEdwgGNNHk1jToJgwTKngZ-iKsCgOpYii8-PMKJU1dO39AmMci4hcohrlOI6JxFdoONBbm9mdXX0ExRyCTppaY2FlyiBPg8FmWVSfXZlB8OpyA94HSRmMi9yauc0zKFwZjNbF3qALm69u0EWqlx5uj28dTZ47k_ZL2B91e-2nfmgEZzyUPBUzGjMwACknQLVuMj6LMAFjpCSaUQaxiAUXkjXTJDGUsJlMJDG6yWVURw8H7drlXxvwhVrkG7eqNirCueSS8OrSOmocKONy7x2kau1spl2pCFb79tS-PXVqrwrcH7WbJIPZCf-tqwLiA_Btl1D-o1PtVq_9Vx4estYXsD1ltftUQkaSq-mwq-S49TaV5F1Noh-9EIss</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1557571596</pqid></control><display><type>article</type><title>Maximizing the Efficiency of Multienzyme Process by Stoichiometry Optimization</title><source>Wiley</source><creator>Dvorak, Pavel ; Kurumbang, Nagendra P. ; Bendl, Jaroslav ; Brezovsky, Jan ; Prokop, Zbynek ; Damborsky, Jiri</creator><creatorcontrib>Dvorak, Pavel ; Kurumbang, Nagendra P. ; Bendl, Jaroslav ; Brezovsky, Jan ; Prokop, Zbynek ; Damborsky, Jiri</creatorcontrib><description>Multienzyme processes represent an important area of biocatalysis. Their efficiency can be enhanced by optimization of the stoichiometry of the biocatalysts. Here we present a workflow for maximizing the efficiency of a three‐enzyme system catalyzing a five‐step chemical conversion. Kinetic models of pathways with wild‐type or engineered enzymes were built, and the enzyme stoichiometry of each pathway was optimized. Mathematical modeling and one‐pot multienzyme experiments provided detailed insights into pathway dynamics, enabled the selection of a suitable engineered enzyme, and afforded high efficiency while minimizing biocatalyst loadings. Optimizing the stoichiometry in a pathway with an engineered enzyme reduced the total biocatalyst load by an impressive 56 %. Our new workflow represents a broadly applicable strategy for optimizing multienzyme processes.
Recipe for success: We propose a workflow for optimizing complex multienzyme reactions by kinetic modeling and stoichiometry optimization. By using a three‐enzyme system catalyzing a five‐step chemical conversion we show that selection of suitable enzymes and stoichiometry optimization can greatly reduce biocatalyst loadings. This work highlights the potential of kinetic modeling for optimizing industrial biocatalytic processes.</description><identifier>ISSN: 1439-4227</identifier><identifier>EISSN: 1439-7633</identifier><identifier>DOI: 10.1002/cbic.201402265</identifier><identifier>PMID: 25099170</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Algorithms ; Biocatalysis ; Biocatalysts ; biotransformations ; Efficiency ; Enzymes ; Enzymes - chemistry ; kinetic modeling ; Kinetics ; Models, Chemical ; multienzyme reaction ; Optimization ; Protein Engineering ; stoichiometry optimization ; Workflow</subject><ispartof>Chembiochem : a European journal of chemical biology, 2014-09, Vol.15 (13), p.1891-1895</ispartof><rights>2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6545-75f6d294eceef51e2aa845d301ecc771a424e969656748fbbc214d7b71ca8573</citedby><cites>FETCH-LOGICAL-c6545-75f6d294eceef51e2aa845d301ecc771a424e969656748fbbc214d7b71ca8573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25099170$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dvorak, Pavel</creatorcontrib><creatorcontrib>Kurumbang, Nagendra P.</creatorcontrib><creatorcontrib>Bendl, Jaroslav</creatorcontrib><creatorcontrib>Brezovsky, Jan</creatorcontrib><creatorcontrib>Prokop, Zbynek</creatorcontrib><creatorcontrib>Damborsky, Jiri</creatorcontrib><title>Maximizing the Efficiency of Multienzyme Process by Stoichiometry Optimization</title><title>Chembiochem : a European journal of chemical biology</title><addtitle>ChemBioChem</addtitle><description>Multienzyme processes represent an important area of biocatalysis. Their efficiency can be enhanced by optimization of the stoichiometry of the biocatalysts. Here we present a workflow for maximizing the efficiency of a three‐enzyme system catalyzing a five‐step chemical conversion. Kinetic models of pathways with wild‐type or engineered enzymes were built, and the enzyme stoichiometry of each pathway was optimized. Mathematical modeling and one‐pot multienzyme experiments provided detailed insights into pathway dynamics, enabled the selection of a suitable engineered enzyme, and afforded high efficiency while minimizing biocatalyst loadings. Optimizing the stoichiometry in a pathway with an engineered enzyme reduced the total biocatalyst load by an impressive 56 %. Our new workflow represents a broadly applicable strategy for optimizing multienzyme processes.
Recipe for success: We propose a workflow for optimizing complex multienzyme reactions by kinetic modeling and stoichiometry optimization. By using a three‐enzyme system catalyzing a five‐step chemical conversion we show that selection of suitable enzymes and stoichiometry optimization can greatly reduce biocatalyst loadings. This work highlights the potential of kinetic modeling for optimizing industrial biocatalytic processes.</description><subject>Algorithms</subject><subject>Biocatalysis</subject><subject>Biocatalysts</subject><subject>biotransformations</subject><subject>Efficiency</subject><subject>Enzymes</subject><subject>Enzymes - chemistry</subject><subject>kinetic modeling</subject><subject>Kinetics</subject><subject>Models, Chemical</subject><subject>multienzyme reaction</subject><subject>Optimization</subject><subject>Protein Engineering</subject><subject>stoichiometry optimization</subject><subject>Workflow</subject><issn>1439-4227</issn><issn>1439-7633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPAjEURhujEUW3Ls0krgfbTh_MUggiCQ8VEpZNp9yRIsNgO0SGX-8QkLhz1dvkfOfmfgjdEdwgGNNHk1jToJgwTKngZ-iKsCgOpYii8-PMKJU1dO39AmMci4hcohrlOI6JxFdoONBbm9mdXX0ExRyCTppaY2FlyiBPg8FmWVSfXZlB8OpyA94HSRmMi9yauc0zKFwZjNbF3qALm69u0EWqlx5uj28dTZ47k_ZL2B91e-2nfmgEZzyUPBUzGjMwACknQLVuMj6LMAFjpCSaUQaxiAUXkjXTJDGUsJlMJDG6yWVURw8H7drlXxvwhVrkG7eqNirCueSS8OrSOmocKONy7x2kau1spl2pCFb79tS-PXVqrwrcH7WbJIPZCf-tqwLiA_Btl1D-o1PtVq_9Vx4estYXsD1ltftUQkaSq-mwq-S49TaV5F1Noh-9EIss</recordid><startdate>20140905</startdate><enddate>20140905</enddate><creator>Dvorak, Pavel</creator><creator>Kurumbang, Nagendra P.</creator><creator>Bendl, Jaroslav</creator><creator>Brezovsky, Jan</creator><creator>Prokop, Zbynek</creator><creator>Damborsky, Jiri</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>20140905</creationdate><title>Maximizing the Efficiency of Multienzyme Process by Stoichiometry Optimization</title><author>Dvorak, Pavel ; Kurumbang, Nagendra P. ; Bendl, Jaroslav ; Brezovsky, Jan ; Prokop, Zbynek ; Damborsky, Jiri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6545-75f6d294eceef51e2aa845d301ecc771a424e969656748fbbc214d7b71ca8573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Biocatalysis</topic><topic>Biocatalysts</topic><topic>biotransformations</topic><topic>Efficiency</topic><topic>Enzymes</topic><topic>Enzymes - chemistry</topic><topic>kinetic modeling</topic><topic>Kinetics</topic><topic>Models, Chemical</topic><topic>multienzyme reaction</topic><topic>Optimization</topic><topic>Protein Engineering</topic><topic>stoichiometry optimization</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dvorak, Pavel</creatorcontrib><creatorcontrib>Kurumbang, Nagendra P.</creatorcontrib><creatorcontrib>Bendl, Jaroslav</creatorcontrib><creatorcontrib>Brezovsky, Jan</creatorcontrib><creatorcontrib>Prokop, Zbynek</creatorcontrib><creatorcontrib>Damborsky, Jiri</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Chembiochem : a European journal of chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dvorak, Pavel</au><au>Kurumbang, Nagendra P.</au><au>Bendl, Jaroslav</au><au>Brezovsky, Jan</au><au>Prokop, Zbynek</au><au>Damborsky, Jiri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximizing the Efficiency of Multienzyme Process by Stoichiometry Optimization</atitle><jtitle>Chembiochem : a European journal of chemical biology</jtitle><addtitle>ChemBioChem</addtitle><date>2014-09-05</date><risdate>2014</risdate><volume>15</volume><issue>13</issue><spage>1891</spage><epage>1895</epage><pages>1891-1895</pages><issn>1439-4227</issn><eissn>1439-7633</eissn><abstract>Multienzyme processes represent an important area of biocatalysis. Their efficiency can be enhanced by optimization of the stoichiometry of the biocatalysts. Here we present a workflow for maximizing the efficiency of a three‐enzyme system catalyzing a five‐step chemical conversion. Kinetic models of pathways with wild‐type or engineered enzymes were built, and the enzyme stoichiometry of each pathway was optimized. Mathematical modeling and one‐pot multienzyme experiments provided detailed insights into pathway dynamics, enabled the selection of a suitable engineered enzyme, and afforded high efficiency while minimizing biocatalyst loadings. Optimizing the stoichiometry in a pathway with an engineered enzyme reduced the total biocatalyst load by an impressive 56 %. Our new workflow represents a broadly applicable strategy for optimizing multienzyme processes.
Recipe for success: We propose a workflow for optimizing complex multienzyme reactions by kinetic modeling and stoichiometry optimization. By using a three‐enzyme system catalyzing a five‐step chemical conversion we show that selection of suitable enzymes and stoichiometry optimization can greatly reduce biocatalyst loadings. This work highlights the potential of kinetic modeling for optimizing industrial biocatalytic processes.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>25099170</pmid><doi>10.1002/cbic.201402265</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1439-4227 |
ispartof | Chembiochem : a European journal of chemical biology, 2014-09, Vol.15 (13), p.1891-1895 |
issn | 1439-4227 1439-7633 |
language | eng |
recordid | cdi_proquest_journals_1557571596 |
source | Wiley |
subjects | Algorithms Biocatalysis Biocatalysts biotransformations Efficiency Enzymes Enzymes - chemistry kinetic modeling Kinetics Models, Chemical multienzyme reaction Optimization Protein Engineering stoichiometry optimization Workflow |
title | Maximizing the Efficiency of Multienzyme Process by Stoichiometry Optimization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A13%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximizing%20the%20Efficiency%20of%20Multienzyme%20Process%20by%20Stoichiometry%20Optimization&rft.jtitle=Chembiochem%20:%20a%20European%20journal%20of%20chemical%20biology&rft.au=Dvorak,%20Pavel&rft.date=2014-09-05&rft.volume=15&rft.issue=13&rft.spage=1891&rft.epage=1895&rft.pages=1891-1895&rft.issn=1439-4227&rft.eissn=1439-7633&rft_id=info:doi/10.1002/cbic.201402265&rft_dat=%3Cproquest_cross%3E3415674661%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6545-75f6d294eceef51e2aa845d301ecc771a424e969656748fbbc214d7b71ca8573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1557571596&rft_id=info:pmid/25099170&rfr_iscdi=true |