Loading…

Formation of the Thermoelectric Candidate Chromium Silicide by Use of a Pack-Cementation Process

Transition-metal silicides are reported to be good candidates for thermoelectric applications because of their thermal and structural stability, high electrical conductivity, and generation of thermoelectric power at elevated temperatures. Chromium disilicide (CrSi 2 ) is a narrow-gap semiconductor...

Full description

Saved in:
Bibliographic Details
Published in:Journal of electronic materials 2014-10, Vol.43 (10), p.3733-3739
Main Authors: Stathokostopoulos, D., Chaliampalias, D., Tarani, E., Theodorakakos, A., Giannoulatou, V., Polymeris, G.S., Pavlidou, E., Chrissafis, K., Hatzikraniotis, E., Paraskevopoulos, K.M., Vourlias, G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Transition-metal silicides are reported to be good candidates for thermoelectric applications because of their thermal and structural stability, high electrical conductivity, and generation of thermoelectric power at elevated temperatures. Chromium disilicide (CrSi 2 ) is a narrow-gap semiconductor and a potential p -type thermoelectric material up to 973 K with a band gap of 0.30 eV. In this work, CrSi 2 was formed from Si wafers by use of a two-step, pack-cementation, chemical diffusion method. Several deposition conditions were used to investigate the effect of temperature and donor concentration on the structure of the final products. Scanning electron microscopy and x-ray diffraction analysis were performed for phase identification, and thermal stability was evaluated by means of thermogravimetric measurements. The results showed that after the first step, chromizing, the structure of the products was a mixture of several Cr–Si phases, depending on the donor (Cr) concentration during the deposition process. After the second step, siliconizing, the pure CrSi 2 phase was formed as a result of Si enrichment of the initial Cr–Si phases. It was also revealed that this compound has thermoelectric properties similar to those reported elsewhere. Moreover, it was found to have exceptional chemical stability even at temperatures up to 1273 K.
ISSN:0361-5235
1543-186X
DOI:10.1007/s11664-014-3100-y