Loading…
Implementation of a quantum metamaterial using superconducting qubits
The key issue for the implementation of a metamaterial is to demonstrate the existence of collective modes corresponding to coherent oscillations of the meta-atoms. Atoms of natural materials interact with electromagnetic fields as quantum two-level systems. Artificial quantum two-level systems can...
Saved in:
Published in: | Nature communications 2014-10, Vol.5 (1), p.5146, Article 5146 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c453t-bc75c5fd1e5a3614ddd5af96333b7786b7eff9a6cb91f6a841eac5242f5646b73 |
---|---|
cites | cdi_FETCH-LOGICAL-c453t-bc75c5fd1e5a3614ddd5af96333b7786b7eff9a6cb91f6a841eac5242f5646b73 |
container_end_page | |
container_issue | 1 |
container_start_page | 5146 |
container_title | Nature communications |
container_volume | 5 |
creator | Macha, Pascal Oelsner, Gregor Reiner, Jan-Michael Marthaler, Michael André, Stephan Schön, Gerd Hübner, Uwe Meyer, Hans-Georg Il’ichev, Evgeni Ustinov, Alexey V. |
description | The key issue for the implementation of a metamaterial is to demonstrate the existence of collective modes corresponding to coherent oscillations of the meta-atoms. Atoms of natural materials interact with electromagnetic fields as quantum two-level systems. Artificial quantum two-level systems can be made, for example, using superconducting nonlinear resonators cooled down to their ground state. Here we perform an experiment in which 20 of these quantum meta-atoms, so-called flux qubits, are embedded into a microwave resonator. We observe the dispersive shift of the resonator frequency imposed by the qubit metamaterial and the collective resonant coupling of eight qubits. The realized prototype represents a mesoscopic limit of naturally occurring spin ensembles and as such we demonstrate the AC-Zeeman shift of a resonant qubit ensemble. The studied system constitutes the implementation of a basic quantum metamaterial in the sense that many artificial atoms are coupled collectively to the quantized mode of a photon field.
Superconducting flux qubits operating as two-level systems can act as artificial atoms, and so represent a potential metamaterial building block. Macha
et al.
assemble 20 such qubits into a metamaterial in which the ‘atoms’ are collectively coupled to the quantized mode of a microwave photon field. |
doi_str_mv | 10.1038/ncomms6146 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1610991621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3459859601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-bc75c5fd1e5a3614ddd5af96333b7786b7eff9a6cb91f6a841eac5242f5646b73</originalsourceid><addsrcrecordid>eNplkE1Lw0AQhhdRrNRe_AES8KZEM_uV5CilaqHgRc9hs9ktKd1Nuh8H_71bWrXgXGaGeXjf4UXoBopHKEj1ZOVgjOdA-Rm6wgWFHEpMzk_mCZp5vylSkRoqSi_RBDMCGBfsCi2WZtwqo2wQoR9sNuhMZLsobIgmMyoII4Jyvdhm0fd2nfk4KicH20UZ9vsutn3w1-hCi61Xs2Ofos-Xxcf8LV-9vy7nz6tcUkZC3sqSSaY7UEyQ9HLXdUzomhNC2rKseFsqrWvBZVuD5qKioIRkmGLNOE1XMkV3B93RDbuofGg2Q3Q2WTbAoahr4BgSdX-gpBu8d0o3o-uNcF8NFM0-tOYvtATfHiVja1T3i_5ElICHA-DTya6VO_H8L_cNsit39A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1610991621</pqid></control><display><type>article</type><title>Implementation of a quantum metamaterial using superconducting qubits</title><source>Publicly Available Content Database</source><source>Nature</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Macha, Pascal ; Oelsner, Gregor ; Reiner, Jan-Michael ; Marthaler, Michael ; André, Stephan ; Schön, Gerd ; Hübner, Uwe ; Meyer, Hans-Georg ; Il’ichev, Evgeni ; Ustinov, Alexey V.</creator><creatorcontrib>Macha, Pascal ; Oelsner, Gregor ; Reiner, Jan-Michael ; Marthaler, Michael ; André, Stephan ; Schön, Gerd ; Hübner, Uwe ; Meyer, Hans-Georg ; Il’ichev, Evgeni ; Ustinov, Alexey V.</creatorcontrib><description>The key issue for the implementation of a metamaterial is to demonstrate the existence of collective modes corresponding to coherent oscillations of the meta-atoms. Atoms of natural materials interact with electromagnetic fields as quantum two-level systems. Artificial quantum two-level systems can be made, for example, using superconducting nonlinear resonators cooled down to their ground state. Here we perform an experiment in which 20 of these quantum meta-atoms, so-called flux qubits, are embedded into a microwave resonator. We observe the dispersive shift of the resonator frequency imposed by the qubit metamaterial and the collective resonant coupling of eight qubits. The realized prototype represents a mesoscopic limit of naturally occurring spin ensembles and as such we demonstrate the AC-Zeeman shift of a resonant qubit ensemble. The studied system constitutes the implementation of a basic quantum metamaterial in the sense that many artificial atoms are coupled collectively to the quantized mode of a photon field.
Superconducting flux qubits operating as two-level systems can act as artificial atoms, and so represent a potential metamaterial building block. Macha
et al.
assemble 20 such qubits into a metamaterial in which the ‘atoms’ are collectively coupled to the quantized mode of a microwave photon field.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms6146</identifier><identifier>PMID: 25312205</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/1003 ; 639/301/357/1015 ; 639/766/483/2802 ; Humanities and Social Sciences ; multidisciplinary ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2014-10, Vol.5 (1), p.5146, Article 5146</ispartof><rights>Springer Nature Limited 2014</rights><rights>Copyright Nature Publishing Group Oct 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-bc75c5fd1e5a3614ddd5af96333b7786b7eff9a6cb91f6a841eac5242f5646b73</citedby><cites>FETCH-LOGICAL-c453t-bc75c5fd1e5a3614ddd5af96333b7786b7eff9a6cb91f6a841eac5242f5646b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1610991621/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1610991621?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25312205$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Macha, Pascal</creatorcontrib><creatorcontrib>Oelsner, Gregor</creatorcontrib><creatorcontrib>Reiner, Jan-Michael</creatorcontrib><creatorcontrib>Marthaler, Michael</creatorcontrib><creatorcontrib>André, Stephan</creatorcontrib><creatorcontrib>Schön, Gerd</creatorcontrib><creatorcontrib>Hübner, Uwe</creatorcontrib><creatorcontrib>Meyer, Hans-Georg</creatorcontrib><creatorcontrib>Il’ichev, Evgeni</creatorcontrib><creatorcontrib>Ustinov, Alexey V.</creatorcontrib><title>Implementation of a quantum metamaterial using superconducting qubits</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The key issue for the implementation of a metamaterial is to demonstrate the existence of collective modes corresponding to coherent oscillations of the meta-atoms. Atoms of natural materials interact with electromagnetic fields as quantum two-level systems. Artificial quantum two-level systems can be made, for example, using superconducting nonlinear resonators cooled down to their ground state. Here we perform an experiment in which 20 of these quantum meta-atoms, so-called flux qubits, are embedded into a microwave resonator. We observe the dispersive shift of the resonator frequency imposed by the qubit metamaterial and the collective resonant coupling of eight qubits. The realized prototype represents a mesoscopic limit of naturally occurring spin ensembles and as such we demonstrate the AC-Zeeman shift of a resonant qubit ensemble. The studied system constitutes the implementation of a basic quantum metamaterial in the sense that many artificial atoms are coupled collectively to the quantized mode of a photon field.
Superconducting flux qubits operating as two-level systems can act as artificial atoms, and so represent a potential metamaterial building block. Macha
et al.
assemble 20 such qubits into a metamaterial in which the ‘atoms’ are collectively coupled to the quantized mode of a microwave photon field.</description><subject>639/301/119/1003</subject><subject>639/301/357/1015</subject><subject>639/766/483/2802</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNplkE1Lw0AQhhdRrNRe_AES8KZEM_uV5CilaqHgRc9hs9ktKd1Nuh8H_71bWrXgXGaGeXjf4UXoBopHKEj1ZOVgjOdA-Rm6wgWFHEpMzk_mCZp5vylSkRoqSi_RBDMCGBfsCi2WZtwqo2wQoR9sNuhMZLsobIgmMyoII4Jyvdhm0fd2nfk4KicH20UZ9vsutn3w1-hCi61Xs2Ofos-Xxcf8LV-9vy7nz6tcUkZC3sqSSaY7UEyQ9HLXdUzomhNC2rKseFsqrWvBZVuD5qKioIRkmGLNOE1XMkV3B93RDbuofGg2Q3Q2WTbAoahr4BgSdX-gpBu8d0o3o-uNcF8NFM0-tOYvtATfHiVja1T3i_5ElICHA-DTya6VO_H8L_cNsit39A</recordid><startdate>20141014</startdate><enddate>20141014</enddate><creator>Macha, Pascal</creator><creator>Oelsner, Gregor</creator><creator>Reiner, Jan-Michael</creator><creator>Marthaler, Michael</creator><creator>André, Stephan</creator><creator>Schön, Gerd</creator><creator>Hübner, Uwe</creator><creator>Meyer, Hans-Georg</creator><creator>Il’ichev, Evgeni</creator><creator>Ustinov, Alexey V.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope></search><sort><creationdate>20141014</creationdate><title>Implementation of a quantum metamaterial using superconducting qubits</title><author>Macha, Pascal ; Oelsner, Gregor ; Reiner, Jan-Michael ; Marthaler, Michael ; André, Stephan ; Schön, Gerd ; Hübner, Uwe ; Meyer, Hans-Georg ; Il’ichev, Evgeni ; Ustinov, Alexey V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-bc75c5fd1e5a3614ddd5af96333b7786b7eff9a6cb91f6a841eac5242f5646b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>639/301/119/1003</topic><topic>639/301/357/1015</topic><topic>639/766/483/2802</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Macha, Pascal</creatorcontrib><creatorcontrib>Oelsner, Gregor</creatorcontrib><creatorcontrib>Reiner, Jan-Michael</creatorcontrib><creatorcontrib>Marthaler, Michael</creatorcontrib><creatorcontrib>André, Stephan</creatorcontrib><creatorcontrib>Schön, Gerd</creatorcontrib><creatorcontrib>Hübner, Uwe</creatorcontrib><creatorcontrib>Meyer, Hans-Georg</creatorcontrib><creatorcontrib>Il’ichev, Evgeni</creatorcontrib><creatorcontrib>Ustinov, Alexey V.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Macha, Pascal</au><au>Oelsner, Gregor</au><au>Reiner, Jan-Michael</au><au>Marthaler, Michael</au><au>André, Stephan</au><au>Schön, Gerd</au><au>Hübner, Uwe</au><au>Meyer, Hans-Georg</au><au>Il’ichev, Evgeni</au><au>Ustinov, Alexey V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implementation of a quantum metamaterial using superconducting qubits</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2014-10-14</date><risdate>2014</risdate><volume>5</volume><issue>1</issue><spage>5146</spage><pages>5146-</pages><artnum>5146</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The key issue for the implementation of a metamaterial is to demonstrate the existence of collective modes corresponding to coherent oscillations of the meta-atoms. Atoms of natural materials interact with electromagnetic fields as quantum two-level systems. Artificial quantum two-level systems can be made, for example, using superconducting nonlinear resonators cooled down to their ground state. Here we perform an experiment in which 20 of these quantum meta-atoms, so-called flux qubits, are embedded into a microwave resonator. We observe the dispersive shift of the resonator frequency imposed by the qubit metamaterial and the collective resonant coupling of eight qubits. The realized prototype represents a mesoscopic limit of naturally occurring spin ensembles and as such we demonstrate the AC-Zeeman shift of a resonant qubit ensemble. The studied system constitutes the implementation of a basic quantum metamaterial in the sense that many artificial atoms are coupled collectively to the quantized mode of a photon field.
Superconducting flux qubits operating as two-level systems can act as artificial atoms, and so represent a potential metamaterial building block. Macha
et al.
assemble 20 such qubits into a metamaterial in which the ‘atoms’ are collectively coupled to the quantized mode of a microwave photon field.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25312205</pmid><doi>10.1038/ncomms6146</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2014-10, Vol.5 (1), p.5146, Article 5146 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_proquest_journals_1610991621 |
source | Publicly Available Content Database; Nature; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/301/119/1003 639/301/357/1015 639/766/483/2802 Humanities and Social Sciences multidisciplinary Science Science (multidisciplinary) |
title | Implementation of a quantum metamaterial using superconducting qubits |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A18%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implementation%20of%20a%20quantum%20metamaterial%20using%20superconducting%20qubits&rft.jtitle=Nature%20communications&rft.au=Macha,%20Pascal&rft.date=2014-10-14&rft.volume=5&rft.issue=1&rft.spage=5146&rft.pages=5146-&rft.artnum=5146&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms6146&rft_dat=%3Cproquest_cross%3E3459859601%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c453t-bc75c5fd1e5a3614ddd5af96333b7786b7eff9a6cb91f6a841eac5242f5646b73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1610991621&rft_id=info:pmid/25312205&rfr_iscdi=true |