Loading…
Improving the spectral resolution and spectral fitting of 1H MRSI data from human calf muscle by the SPREAD technique
Proton magnetic resonance spectroscopic imaging (1H MRSI) has been used for the in vivo measurement of intramyocellular lipids (IMCLs) in human calf muscle for almost two decades, but the low spectral resolution between extramyocellular lipids (EMCLs) and IMCLs, partially caused by the magnetic fiel...
Saved in:
Published in: | NMR in biomedicine 2014-11, Vol.27 (11), p.1325-1332 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Proton magnetic resonance spectroscopic imaging (1H MRSI) has been used for the in vivo measurement of intramyocellular lipids (IMCLs) in human calf muscle for almost two decades, but the low spectral resolution between extramyocellular lipids (EMCLs) and IMCLs, partially caused by the magnetic field inhomogeneity, has hindered the accuracy of spectral fitting. The purpose of this paper was to enhance the spectral resolution of 1H MRSI data from human calf muscle using the SPREAD (spectral resolution amelioration by deconvolution) technique and to assess the influence of improved spectral resolution on the accuracy of spectral fitting and on in vivo measurement of IMCLs. We acquired MRI and 1H MRSI data from calf muscles of three healthy volunteers. We reconstructed spectral lineshapes of the 1H MRSI data based on field maps and used the lineshapes to deconvolve the measured MRS spectra, thereby eliminating the line broadening caused by field inhomogeneities and improving the spectral resolution of the 1H MRSI data. We employed Monte Carlo (MC) simulations with 200 noise realizations to measure the variations of spectral fitting parameters and used an F‐test to evaluate the significance of the differences of the variations between the spectra before SPREAD and after SPREAD. We also used Cramer–Rao lower bounds (CRLBs) to assess the improvements of spectral fitting after SPREAD. The use of SPREAD enhanced the separation between EMCL and IMCL peaks in 1H MRSI spectra from human calf muscle. MC simulations and F‐tests showed that the use of SPREAD significantly reduced the standard deviations of the estimated IMCL peak areas (p < 10−8), and the CRLBs were strongly reduced (by ~37%). Copyright © 2014 John Wiley & Sons, Ltd.
Proton MRSI spectra from human calf muscle suffer from severe overlap between EMCL and IMCL peaks. We showed that using a spectral resolution enhancement technique we can improve the spectral resolution. Results of Monte Carlo simulations and F‐tests show that the accuracy of spectral fitting was significantly improved for MRS data by the technique. |
---|---|
ISSN: | 0952-3480 1099-1492 |
DOI: | 10.1002/nbm.3193 |