Loading…
Embryonic Development of Circadian Oscillations in the Mouse Hypothalamus
Circadian rhythms in mammals are regulated by the hypothalamic suprachiasmatic nucleus (SCN). The generation of circadian oscillations is a cell-autonomous property, and coupling among cells is essential for the SCN to function as a pacemaker. The development of SCN anatomy and cytology has been ext...
Saved in:
Published in: | Journal of biological rhythms 2014-08, Vol.29 (4), p.299-310 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Circadian rhythms in mammals are regulated by the hypothalamic suprachiasmatic nucleus (SCN). The generation of circadian oscillations is a cell-autonomous property, and coupling among cells is essential for the SCN to function as a pacemaker. The development of SCN anatomy and cytology has been extensively studied, but the point in development when the SCN first has the capacity to generate circadian oscillations has not been established. We therefore examined the development of circadian oscillations using per2::luc mice in which bioluminescence tracks the expression of the circadian clock protein, PER2. In vitro, hypothalamic explants first expressed consistent oscillations when isolated between 15 and 16 days postfertilization (e15). Oscillations were more robust at later ages. Explants from other brain areas did not express oscillations, indicating that the development of oscillations is not a general property of embryonic tissue. SCN explants obtained on e14 did not initially express oscillations but developed them in vitro over 4 to 6 d. Although coupling among cells is required for the long-term expression of tissue-level oscillations, explants from mice lacking the coupling peptide vasoactive intestinal peptide still developed oscillations. In the mouse, the capacity to generate molecular oscillations on e15 coincides with the completion of neurogenesis and SCN-specific transcription factor expression. Thus, within a day of its genesis at an age approximately equivalent to the end of the first trimester in humans, the SCN develops the capacity to express circadian oscillations and autonomously develops mechanisms sufficient to couple and synchronize its cells. |
---|---|
ISSN: | 0748-7304 1552-4531 |
DOI: | 10.1177/0748730414545086 |