Loading…

The Task Scheduling Problem: A NeuroGenetic Approach

This paper addresses the task scheduling problem which involves minimizing the makespan in scheduling n tasks on m machines (resources) where the tasks follow a precedence relation and preemption is not allowed. The machines (resources) are all identical and a task needs only one machine for process...

Full description

Saved in:
Bibliographic Details
Published in:Journal of business & economics research (Littleton, Colo.) Colo.), 2014-09, Vol.12 (4), p.327
Main Authors: Agarwal, Anurag, Colak, Selcuk, Deane, Jason, Rakes, Terry
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 4
container_start_page 327
container_title Journal of business & economics research (Littleton, Colo.)
container_volume 12
creator Agarwal, Anurag
Colak, Selcuk
Deane, Jason
Rakes, Terry
description This paper addresses the task scheduling problem which involves minimizing the makespan in scheduling n tasks on m machines (resources) where the tasks follow a precedence relation and preemption is not allowed. The machines (resources) are all identical and a task needs only one machine for processing. Like most scheduling problems, this one is NP-hard in nature, making it difficult to find exact solutions for larger problems in reasonable computational time. Heuristic and metaheuristic approaches are therefore needed to solve this type of problem. This paper proposes a metaheuristic approach - called NeuroGenetic - which is a combination of an augmented neural network and a genetic algorithm. The augmented neural network approach is itself a hybrid of a heuristic approach and a neural network approach. The NeuroGenetic approach is tested against some popular test problems from the literature, and the results indicate that the NeuroGenetic approach performs significantly better than either the augmented neural network or the genetic algorithms alone.
doi_str_mv 10.19030/jber.v12i4.8860
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1613025749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3463466861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1009-94d707799816dbd3cd2c7cdce2d89df7dc8afbd596e17067d56fe7e6287497ea3</originalsourceid><addsrcrecordid>eNotkM9LwzAYhoMoOKd3jwHPnV_SND-8jaFTGCpYz6FNvtrWbp3JKuy_t9s8vZeH94GHkFsGM2Yghfu2xDD7ZbwRM60lnJEJZ5lKtDbpOZmwTPBECKEvyVWMLYDMlIQJEXmNNC_iN_1wNfqhazZf9D30ZYfrBzqnrziEfokb3DWOzrfb0BeuviYXVdFFvPnfKfl8eswXz8nqbfmymK8SxwBMYoRXoJQxmklf-tR57pTzDrnXxlfKO11Upc-MRKZAKp_JChVKrpUwCot0Su5Ov6P2Z8C4s20_hM2otEyyFHg2giMFJ8qFPsaAld2GZl2EvWVgj23soY09trGHNukfZkBXdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1613025749</pqid></control><display><type>article</type><title>The Task Scheduling Problem: A NeuroGenetic Approach</title><source>ABI/INFORM Global</source><creator>Agarwal, Anurag ; Colak, Selcuk ; Deane, Jason ; Rakes, Terry</creator><creatorcontrib>Agarwal, Anurag ; Colak, Selcuk ; Deane, Jason ; Rakes, Terry</creatorcontrib><description>This paper addresses the task scheduling problem which involves minimizing the makespan in scheduling n tasks on m machines (resources) where the tasks follow a precedence relation and preemption is not allowed. The machines (resources) are all identical and a task needs only one machine for processing. Like most scheduling problems, this one is NP-hard in nature, making it difficult to find exact solutions for larger problems in reasonable computational time. Heuristic and metaheuristic approaches are therefore needed to solve this type of problem. This paper proposes a metaheuristic approach - called NeuroGenetic - which is a combination of an augmented neural network and a genetic algorithm. The augmented neural network approach is itself a hybrid of a heuristic approach and a neural network approach. The NeuroGenetic approach is tested against some popular test problems from the literature, and the results indicate that the NeuroGenetic approach performs significantly better than either the augmented neural network or the genetic algorithms alone.</description><identifier>ISSN: 1542-4448</identifier><identifier>EISSN: 2157-8893</identifier><identifier>DOI: 10.19030/jber.v12i4.8860</identifier><language>eng</language><publisher>Littleton: The Clute Institute</publisher><subject>Critical path ; Genetic algorithms ; Heuristic ; Heuristics ; Job shops ; Neighborhoods ; Neural networks ; Scheduling ; Studies</subject><ispartof>Journal of business &amp; economics research (Littleton, Colo.), 2014-09, Vol.12 (4), p.327</ispartof><rights>Copyright Clute Institute for Academic Research 2014</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1613025749?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363</link.rule.ids></links><search><creatorcontrib>Agarwal, Anurag</creatorcontrib><creatorcontrib>Colak, Selcuk</creatorcontrib><creatorcontrib>Deane, Jason</creatorcontrib><creatorcontrib>Rakes, Terry</creatorcontrib><title>The Task Scheduling Problem: A NeuroGenetic Approach</title><title>Journal of business &amp; economics research (Littleton, Colo.)</title><description>This paper addresses the task scheduling problem which involves minimizing the makespan in scheduling n tasks on m machines (resources) where the tasks follow a precedence relation and preemption is not allowed. The machines (resources) are all identical and a task needs only one machine for processing. Like most scheduling problems, this one is NP-hard in nature, making it difficult to find exact solutions for larger problems in reasonable computational time. Heuristic and metaheuristic approaches are therefore needed to solve this type of problem. This paper proposes a metaheuristic approach - called NeuroGenetic - which is a combination of an augmented neural network and a genetic algorithm. The augmented neural network approach is itself a hybrid of a heuristic approach and a neural network approach. The NeuroGenetic approach is tested against some popular test problems from the literature, and the results indicate that the NeuroGenetic approach performs significantly better than either the augmented neural network or the genetic algorithms alone.</description><subject>Critical path</subject><subject>Genetic algorithms</subject><subject>Heuristic</subject><subject>Heuristics</subject><subject>Job shops</subject><subject>Neighborhoods</subject><subject>Neural networks</subject><subject>Scheduling</subject><subject>Studies</subject><issn>1542-4448</issn><issn>2157-8893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNotkM9LwzAYhoMoOKd3jwHPnV_SND-8jaFTGCpYz6FNvtrWbp3JKuy_t9s8vZeH94GHkFsGM2Yghfu2xDD7ZbwRM60lnJEJZ5lKtDbpOZmwTPBECKEvyVWMLYDMlIQJEXmNNC_iN_1wNfqhazZf9D30ZYfrBzqnrziEfokb3DWOzrfb0BeuviYXVdFFvPnfKfl8eswXz8nqbfmymK8SxwBMYoRXoJQxmklf-tR57pTzDrnXxlfKO11Upc-MRKZAKp_JChVKrpUwCot0Su5Ov6P2Z8C4s20_hM2otEyyFHg2giMFJ8qFPsaAld2GZl2EvWVgj23soY09trGHNukfZkBXdw</recordid><startdate>20140924</startdate><enddate>20140924</enddate><creator>Agarwal, Anurag</creator><creator>Colak, Selcuk</creator><creator>Deane, Jason</creator><creator>Rakes, Terry</creator><general>The Clute Institute</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20140924</creationdate><title>The Task Scheduling Problem: A NeuroGenetic Approach</title><author>Agarwal, Anurag ; Colak, Selcuk ; Deane, Jason ; Rakes, Terry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1009-94d707799816dbd3cd2c7cdce2d89df7dc8afbd596e17067d56fe7e6287497ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Critical path</topic><topic>Genetic algorithms</topic><topic>Heuristic</topic><topic>Heuristics</topic><topic>Job shops</topic><topic>Neighborhoods</topic><topic>Neural networks</topic><topic>Scheduling</topic><topic>Studies</topic><toplevel>online_resources</toplevel><creatorcontrib>Agarwal, Anurag</creatorcontrib><creatorcontrib>Colak, Selcuk</creatorcontrib><creatorcontrib>Deane, Jason</creatorcontrib><creatorcontrib>Rakes, Terry</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of business &amp; economics research (Littleton, Colo.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agarwal, Anurag</au><au>Colak, Selcuk</au><au>Deane, Jason</au><au>Rakes, Terry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Task Scheduling Problem: A NeuroGenetic Approach</atitle><jtitle>Journal of business &amp; economics research (Littleton, Colo.)</jtitle><date>2014-09-24</date><risdate>2014</risdate><volume>12</volume><issue>4</issue><spage>327</spage><pages>327-</pages><issn>1542-4448</issn><eissn>2157-8893</eissn><abstract>This paper addresses the task scheduling problem which involves minimizing the makespan in scheduling n tasks on m machines (resources) where the tasks follow a precedence relation and preemption is not allowed. The machines (resources) are all identical and a task needs only one machine for processing. Like most scheduling problems, this one is NP-hard in nature, making it difficult to find exact solutions for larger problems in reasonable computational time. Heuristic and metaheuristic approaches are therefore needed to solve this type of problem. This paper proposes a metaheuristic approach - called NeuroGenetic - which is a combination of an augmented neural network and a genetic algorithm. The augmented neural network approach is itself a hybrid of a heuristic approach and a neural network approach. The NeuroGenetic approach is tested against some popular test problems from the literature, and the results indicate that the NeuroGenetic approach performs significantly better than either the augmented neural network or the genetic algorithms alone.</abstract><cop>Littleton</cop><pub>The Clute Institute</pub><doi>10.19030/jber.v12i4.8860</doi></addata></record>
fulltext fulltext
identifier ISSN: 1542-4448
ispartof Journal of business & economics research (Littleton, Colo.), 2014-09, Vol.12 (4), p.327
issn 1542-4448
2157-8893
language eng
recordid cdi_proquest_journals_1613025749
source ABI/INFORM Global
subjects Critical path
Genetic algorithms
Heuristic
Heuristics
Job shops
Neighborhoods
Neural networks
Scheduling
Studies
title The Task Scheduling Problem: A NeuroGenetic Approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A55%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Task%20Scheduling%20Problem:%20A%20NeuroGenetic%20Approach&rft.jtitle=Journal%20of%20business%20&%20economics%20research%20(Littleton,%20Colo.)&rft.au=Agarwal,%20Anurag&rft.date=2014-09-24&rft.volume=12&rft.issue=4&rft.spage=327&rft.pages=327-&rft.issn=1542-4448&rft.eissn=2157-8893&rft_id=info:doi/10.19030/jber.v12i4.8860&rft_dat=%3Cproquest_cross%3E3463466861%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1009-94d707799816dbd3cd2c7cdce2d89df7dc8afbd596e17067d56fe7e6287497ea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1613025749&rft_id=info:pmid/&rfr_iscdi=true