Loading…
A 20-MHz 1.8-W DC-DC Converter With Parallel Microinductors and Improved Light-Load Efficiency
The purpose of this paper is to show that distributing microinductors in parallel can reduce light-load losses, while also maintaining the same overall footprint area and the same effective inductance as a single microinductor. The performance of parallel microinductors is compared in a number of co...
Saved in:
Published in: | IEEE transactions on power electronics 2015-02, Vol.30 (2), p.771-779 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The purpose of this paper is to show that distributing microinductors in parallel can reduce light-load losses, while also maintaining the same overall footprint area and the same effective inductance as a single microinductor. The performance of parallel microinductors is compared in a number of configurations to demonstrate which configuration provides the best overall performance in terms of circuit size, conversion efficiency, and power handling. Light-load saving techniques are implemented demonstrating the potential of parallel inductors to improve efficiency at light-load. Measured and modeled results of efficiency versus load are presented for the prototype DC-DC converters explored, and a peak efficiency of 74% is predicted for a 1.8 W, 20-MHz DC-DC converter including microinductors. |
---|---|
ISSN: | 0885-8993 1941-0107 |
DOI: | 10.1109/TPEL.2014.2309393 |