Loading…

A 20-MHz 1.8-W DC-DC Converter With Parallel Microinductors and Improved Light-Load Efficiency

The purpose of this paper is to show that distributing microinductors in parallel can reduce light-load losses, while also maintaining the same overall footprint area and the same effective inductance as a single microinductor. The performance of parallel microinductors is compared in a number of co...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power electronics 2015-02, Vol.30 (2), p.771-779
Main Authors: Feeney, Ciaran, Ningning Wang, O Mathuna, Sean Cian, Duffy, Maeve
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c359t-f8da4c943dc3873955fb5b9a500c1657baba15847543800458258e2712226b213
cites cdi_FETCH-LOGICAL-c359t-f8da4c943dc3873955fb5b9a500c1657baba15847543800458258e2712226b213
container_end_page 779
container_issue 2
container_start_page 771
container_title IEEE transactions on power electronics
container_volume 30
creator Feeney, Ciaran
Ningning Wang
O Mathuna, Sean Cian
Duffy, Maeve
description The purpose of this paper is to show that distributing microinductors in parallel can reduce light-load losses, while also maintaining the same overall footprint area and the same effective inductance as a single microinductor. The performance of parallel microinductors is compared in a number of configurations to demonstrate which configuration provides the best overall performance in terms of circuit size, conversion efficiency, and power handling. Light-load saving techniques are implemented demonstrating the potential of parallel inductors to improve efficiency at light-load. Measured and modeled results of efficiency versus load are presented for the prototype DC-DC converters explored, and a peak efficiency of 74% is predicted for a 1.8 W, 20-MHz DC-DC converter including microinductors.
doi_str_mv 10.1109/TPEL.2014.2309393
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1616172800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6754177</ieee_id><sourcerecordid>1744713331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-f8da4c943dc3873955fb5b9a500c1657baba15847543800458258e2712226b213</originalsourceid><addsrcrecordid>eNqNkTtLBDEUhYMouK7-ALEJ2Nhkzc1jk5Qyrg8Y0UKxc8hkMhqZndFkVtBfb5YVCyu5xW2-czn3HIQOgc4AqDm9v1uUM0ZBzBinhhu-hSZgBBAKVG2jCdVaEm0M30V7Kb3STEoKE_R0hhklN1dfGGaaPOLzgpwXuBj6Dx9HH_FjGF_wnY2263yHb4KLQ-iblRuHmLDtG3y9fIvDh29wGZ5fRlIOtsGLtg0u-N597qOd1nbJH_zsKXq4WNwXV6S8vbwuzkriuDQjaXVjhTOCN45rxY2UbS1rYyWlDuZS1ba2ILVQUnBNqZCaSe2ZAsbYvGbAp-hkczebeV_5NFbLkJzvOtv7YZUqUEIo4Jz_A50zwxUVOcUpOv6Dvg6r2OdHMpVHsWwmU7ChcjYpRd9WbzEsbfysgFbrcqp1OdW6nOqnnKw52miC9_6Xn-f_QCn-DSlIhbo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1616172800</pqid></control><display><type>article</type><title>A 20-MHz 1.8-W DC-DC Converter With Parallel Microinductors and Improved Light-Load Efficiency</title><source>IEEE Xplore (Online service)</source><creator>Feeney, Ciaran ; Ningning Wang ; O Mathuna, Sean Cian ; Duffy, Maeve</creator><creatorcontrib>Feeney, Ciaran ; Ningning Wang ; O Mathuna, Sean Cian ; Duffy, Maeve</creatorcontrib><description>The purpose of this paper is to show that distributing microinductors in parallel can reduce light-load losses, while also maintaining the same overall footprint area and the same effective inductance as a single microinductor. The performance of parallel microinductors is compared in a number of configurations to demonstrate which configuration provides the best overall performance in terms of circuit size, conversion efficiency, and power handling. Light-load saving techniques are implemented demonstrating the potential of parallel inductors to improve efficiency at light-load. Measured and modeled results of efficiency versus load are presented for the prototype DC-DC converters explored, and a peak efficiency of 74% is predicted for a 1.8 W, 20-MHz DC-DC converter including microinductors.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2014.2309393</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Circuits ; Conversion ; Converters ; DC-DC converters ; Distributing ; Electrical equipment ; Energy efficiency ; Footprints ; Inductance ; Inductors ; inductors-on-silicon ; light-load efficiency ; Magnetic cores ; Mathematical models ; microfabricated ; microinductor ; MOSFET ; PFM ; Power supply ; Prototypes ; Resistance ; Switches ; thin-film inductors ; Windings</subject><ispartof>IEEE transactions on power electronics, 2015-02, Vol.30 (2), p.771-779</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-f8da4c943dc3873955fb5b9a500c1657baba15847543800458258e2712226b213</citedby><cites>FETCH-LOGICAL-c359t-f8da4c943dc3873955fb5b9a500c1657baba15847543800458258e2712226b213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6754177$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54775</link.rule.ids></links><search><creatorcontrib>Feeney, Ciaran</creatorcontrib><creatorcontrib>Ningning Wang</creatorcontrib><creatorcontrib>O Mathuna, Sean Cian</creatorcontrib><creatorcontrib>Duffy, Maeve</creatorcontrib><title>A 20-MHz 1.8-W DC-DC Converter With Parallel Microinductors and Improved Light-Load Efficiency</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>The purpose of this paper is to show that distributing microinductors in parallel can reduce light-load losses, while also maintaining the same overall footprint area and the same effective inductance as a single microinductor. The performance of parallel microinductors is compared in a number of configurations to demonstrate which configuration provides the best overall performance in terms of circuit size, conversion efficiency, and power handling. Light-load saving techniques are implemented demonstrating the potential of parallel inductors to improve efficiency at light-load. Measured and modeled results of efficiency versus load are presented for the prototype DC-DC converters explored, and a peak efficiency of 74% is predicted for a 1.8 W, 20-MHz DC-DC converter including microinductors.</description><subject>Circuits</subject><subject>Conversion</subject><subject>Converters</subject><subject>DC-DC converters</subject><subject>Distributing</subject><subject>Electrical equipment</subject><subject>Energy efficiency</subject><subject>Footprints</subject><subject>Inductance</subject><subject>Inductors</subject><subject>inductors-on-silicon</subject><subject>light-load efficiency</subject><subject>Magnetic cores</subject><subject>Mathematical models</subject><subject>microfabricated</subject><subject>microinductor</subject><subject>MOSFET</subject><subject>PFM</subject><subject>Power supply</subject><subject>Prototypes</subject><subject>Resistance</subject><subject>Switches</subject><subject>thin-film inductors</subject><subject>Windings</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkTtLBDEUhYMouK7-ALEJ2Nhkzc1jk5Qyrg8Y0UKxc8hkMhqZndFkVtBfb5YVCyu5xW2-czn3HIQOgc4AqDm9v1uUM0ZBzBinhhu-hSZgBBAKVG2jCdVaEm0M30V7Kb3STEoKE_R0hhklN1dfGGaaPOLzgpwXuBj6Dx9HH_FjGF_wnY2263yHb4KLQ-iblRuHmLDtG3y9fIvDh29wGZ5fRlIOtsGLtg0u-N597qOd1nbJH_zsKXq4WNwXV6S8vbwuzkriuDQjaXVjhTOCN45rxY2UbS1rYyWlDuZS1ba2ILVQUnBNqZCaSe2ZAsbYvGbAp-hkczebeV_5NFbLkJzvOtv7YZUqUEIo4Jz_A50zwxUVOcUpOv6Dvg6r2OdHMpVHsWwmU7ChcjYpRd9WbzEsbfysgFbrcqp1OdW6nOqnnKw52miC9_6Xn-f_QCn-DSlIhbo</recordid><startdate>201502</startdate><enddate>201502</enddate><creator>Feeney, Ciaran</creator><creator>Ningning Wang</creator><creator>O Mathuna, Sean Cian</creator><creator>Duffy, Maeve</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>201502</creationdate><title>A 20-MHz 1.8-W DC-DC Converter With Parallel Microinductors and Improved Light-Load Efficiency</title><author>Feeney, Ciaran ; Ningning Wang ; O Mathuna, Sean Cian ; Duffy, Maeve</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-f8da4c943dc3873955fb5b9a500c1657baba15847543800458258e2712226b213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Circuits</topic><topic>Conversion</topic><topic>Converters</topic><topic>DC-DC converters</topic><topic>Distributing</topic><topic>Electrical equipment</topic><topic>Energy efficiency</topic><topic>Footprints</topic><topic>Inductance</topic><topic>Inductors</topic><topic>inductors-on-silicon</topic><topic>light-load efficiency</topic><topic>Magnetic cores</topic><topic>Mathematical models</topic><topic>microfabricated</topic><topic>microinductor</topic><topic>MOSFET</topic><topic>PFM</topic><topic>Power supply</topic><topic>Prototypes</topic><topic>Resistance</topic><topic>Switches</topic><topic>thin-film inductors</topic><topic>Windings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feeney, Ciaran</creatorcontrib><creatorcontrib>Ningning Wang</creatorcontrib><creatorcontrib>O Mathuna, Sean Cian</creatorcontrib><creatorcontrib>Duffy, Maeve</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feeney, Ciaran</au><au>Ningning Wang</au><au>O Mathuna, Sean Cian</au><au>Duffy, Maeve</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 20-MHz 1.8-W DC-DC Converter With Parallel Microinductors and Improved Light-Load Efficiency</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2015-02</date><risdate>2015</risdate><volume>30</volume><issue>2</issue><spage>771</spage><epage>779</epage><pages>771-779</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>The purpose of this paper is to show that distributing microinductors in parallel can reduce light-load losses, while also maintaining the same overall footprint area and the same effective inductance as a single microinductor. The performance of parallel microinductors is compared in a number of configurations to demonstrate which configuration provides the best overall performance in terms of circuit size, conversion efficiency, and power handling. Light-load saving techniques are implemented demonstrating the potential of parallel inductors to improve efficiency at light-load. Measured and modeled results of efficiency versus load are presented for the prototype DC-DC converters explored, and a peak efficiency of 74% is predicted for a 1.8 W, 20-MHz DC-DC converter including microinductors.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2014.2309393</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2015-02, Vol.30 (2), p.771-779
issn 0885-8993
1941-0107
language eng
recordid cdi_proquest_journals_1616172800
source IEEE Xplore (Online service)
subjects Circuits
Conversion
Converters
DC-DC converters
Distributing
Electrical equipment
Energy efficiency
Footprints
Inductance
Inductors
inductors-on-silicon
light-load efficiency
Magnetic cores
Mathematical models
microfabricated
microinductor
MOSFET
PFM
Power supply
Prototypes
Resistance
Switches
thin-film inductors
Windings
title A 20-MHz 1.8-W DC-DC Converter With Parallel Microinductors and Improved Light-Load Efficiency
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T15%3A15%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%2020-MHz%201.8-W%20DC-DC%20Converter%20With%20Parallel%20Microinductors%20and%20Improved%20Light-Load%20Efficiency&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Feeney,%20Ciaran&rft.date=2015-02&rft.volume=30&rft.issue=2&rft.spage=771&rft.epage=779&rft.pages=771-779&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2014.2309393&rft_dat=%3Cproquest_cross%3E1744713331%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-f8da4c943dc3873955fb5b9a500c1657baba15847543800458258e2712226b213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1616172800&rft_id=info:pmid/&rft_ieee_id=6754177&rfr_iscdi=true