Loading…

Power Blurring: Fast Static and Transient Thermal Analysis Method for Packaged Integrated Circuits and Power Devices

High-temperature and temperature nonuniformity in high-performance integrated circuits (ICs) can significantly degrade chip performance and reliability. Thus, accurate temperature information is a critical factor in chip design and verification. Conventional volume grid-based techniques, such as fin...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on very large scale integration (VLSI) systems 2014-11, Vol.22 (11), p.2366-2379
Main Authors: Ziabari, Amirkoushyar, Je-Hyoung Park, Ardestani, Ehsan K., Renau, Jose, Sung-Mo Kang, Shakouri, Ali
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c398t-75ceb9cb4f0c59b92072614d1c7732046dc18f3aa5c75c9a416a60ea276392353
cites cdi_FETCH-LOGICAL-c398t-75ceb9cb4f0c59b92072614d1c7732046dc18f3aa5c75c9a416a60ea276392353
container_end_page 2379
container_issue 11
container_start_page 2366
container_title IEEE transactions on very large scale integration (VLSI) systems
container_volume 22
creator Ziabari, Amirkoushyar
Je-Hyoung Park
Ardestani, Ehsan K.
Renau, Jose
Sung-Mo Kang
Shakouri, Ali
description High-temperature and temperature nonuniformity in high-performance integrated circuits (ICs) can significantly degrade chip performance and reliability. Thus, accurate temperature information is a critical factor in chip design and verification. Conventional volume grid-based techniques, such as finite-difference and finite-element methods (FEMs), are computationally expensive. In an effort to reduce the computation time, we have developed a new method, called power blurring (PB), for calculating temperature distributions using a matrix convolution technique in analogy with image blurring. The PB method considers the finite size and boundaries of the chip as well as 3-D heat spreading in the heat sink. PB is applicable to both static and transient thermal simulations. Comparative studies with a commercial FEM tool show that the PB method is accurate within 2%, with orders of magnitude speedup compared with FEM methods. PB can be applied to very fine power maps with a grid size as small as 10 μm for a fully packaged IC or submicrometer heat sources in power electronic transistor arrays. In comparison with architecture-level thermal simulators, such as HotSpot, PB provides much more accurate temperature profiles with reduced computation time.
doi_str_mv 10.1109/TVLSI.2013.2293422
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_1616985679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6729105</ieee_id><sourcerecordid>1642208690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-75ceb9cb4f0c59b92072614d1c7732046dc18f3aa5c75c9a416a60ea276392353</originalsourceid><addsrcrecordid>eNpdkU9PwzAMxSsEEjD4AnCJxIVLR_60acNtDAaThpjE4Fp5qTsyuhaSFLRvT8YmDvhiH37vWfaLojNG-4xRdTV7nTyP-5wy0edciYTzveiIpWkWq1D7YaZSxDln9DA6dm5JKUsSRY8iP22_0ZKburPWNItrMgLnybMHbzSBpiQzC40z2Hgye0O7gpoMGqjXzjjyiP6tLUnVWjIF_Q4LLMm48biw4MM4NFZ3xrtfm-2aW_wyGt1JdFBB7fB013vRy-huNnyIJ0_34-FgEmuhch9nqca50vOkojpVc8VpxiVLSqazTHCayFKzvBIAqQ6ogoRJkBSBZ1IoLlLRiy63vh-2_ezQ-WJlnMa6hgbbzhVMhkfRXCoa0It_6LLtbLh0QzGp8lRmKlB8S2nbOmexKj6sWYFdF4wWmyCK3yCKTRDFLoggOt-KDCL-CWTGFaOp-AFLYYQO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1616985679</pqid></control><display><type>article</type><title>Power Blurring: Fast Static and Transient Thermal Analysis Method for Packaged Integrated Circuits and Power Devices</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Ziabari, Amirkoushyar ; Je-Hyoung Park ; Ardestani, Ehsan K. ; Renau, Jose ; Sung-Mo Kang ; Shakouri, Ali</creator><creatorcontrib>Ziabari, Amirkoushyar ; Je-Hyoung Park ; Ardestani, Ehsan K. ; Renau, Jose ; Sung-Mo Kang ; Shakouri, Ali</creatorcontrib><description>High-temperature and temperature nonuniformity in high-performance integrated circuits (ICs) can significantly degrade chip performance and reliability. Thus, accurate temperature information is a critical factor in chip design and verification. Conventional volume grid-based techniques, such as finite-difference and finite-element methods (FEMs), are computationally expensive. In an effort to reduce the computation time, we have developed a new method, called power blurring (PB), for calculating temperature distributions using a matrix convolution technique in analogy with image blurring. The PB method considers the finite size and boundaries of the chip as well as 3-D heat spreading in the heat sink. PB is applicable to both static and transient thermal simulations. Comparative studies with a commercial FEM tool show that the PB method is accurate within 2%, with orders of magnitude speedup compared with FEM methods. PB can be applied to very fine power maps with a grid size as small as 10 μm for a fully packaged IC or submicrometer heat sources in power electronic transistor arrays. In comparison with architecture-level thermal simulators, such as HotSpot, PB provides much more accurate temperature profiles with reduced computation time.</description><identifier>ISSN: 1063-8210</identifier><identifier>EISSN: 1557-9999</identifier><identifier>DOI: 10.1109/TVLSI.2013.2293422</identifier><identifier>CODEN: IEVSE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Blurring ; Chips ; Computation ; Finite element method ; Finite-element method (FEM) ; Geometry ; Heat ; Heat sinks ; heat transfer ; Heating ; Integrated circuits ; integrated circuits (ICs) ; Mathematical analysis ; Mathematical models ; package ; power electronics ; Silicon ; temperature ; Temperature distribution ; Thermal analysis ; thermal management ; thermal simulation ; Very large scale integration</subject><ispartof>IEEE transactions on very large scale integration (VLSI) systems, 2014-11, Vol.22 (11), p.2366-2379</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-75ceb9cb4f0c59b92072614d1c7732046dc18f3aa5c75c9a416a60ea276392353</citedby><cites>FETCH-LOGICAL-c398t-75ceb9cb4f0c59b92072614d1c7732046dc18f3aa5c75c9a416a60ea276392353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6729105$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Ziabari, Amirkoushyar</creatorcontrib><creatorcontrib>Je-Hyoung Park</creatorcontrib><creatorcontrib>Ardestani, Ehsan K.</creatorcontrib><creatorcontrib>Renau, Jose</creatorcontrib><creatorcontrib>Sung-Mo Kang</creatorcontrib><creatorcontrib>Shakouri, Ali</creatorcontrib><title>Power Blurring: Fast Static and Transient Thermal Analysis Method for Packaged Integrated Circuits and Power Devices</title><title>IEEE transactions on very large scale integration (VLSI) systems</title><addtitle>TVLSI</addtitle><description>High-temperature and temperature nonuniformity in high-performance integrated circuits (ICs) can significantly degrade chip performance and reliability. Thus, accurate temperature information is a critical factor in chip design and verification. Conventional volume grid-based techniques, such as finite-difference and finite-element methods (FEMs), are computationally expensive. In an effort to reduce the computation time, we have developed a new method, called power blurring (PB), for calculating temperature distributions using a matrix convolution technique in analogy with image blurring. The PB method considers the finite size and boundaries of the chip as well as 3-D heat spreading in the heat sink. PB is applicable to both static and transient thermal simulations. Comparative studies with a commercial FEM tool show that the PB method is accurate within 2%, with orders of magnitude speedup compared with FEM methods. PB can be applied to very fine power maps with a grid size as small as 10 μm for a fully packaged IC or submicrometer heat sources in power electronic transistor arrays. In comparison with architecture-level thermal simulators, such as HotSpot, PB provides much more accurate temperature profiles with reduced computation time.</description><subject>Blurring</subject><subject>Chips</subject><subject>Computation</subject><subject>Finite element method</subject><subject>Finite-element method (FEM)</subject><subject>Geometry</subject><subject>Heat</subject><subject>Heat sinks</subject><subject>heat transfer</subject><subject>Heating</subject><subject>Integrated circuits</subject><subject>integrated circuits (ICs)</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>package</subject><subject>power electronics</subject><subject>Silicon</subject><subject>temperature</subject><subject>Temperature distribution</subject><subject>Thermal analysis</subject><subject>thermal management</subject><subject>thermal simulation</subject><subject>Very large scale integration</subject><issn>1063-8210</issn><issn>1557-9999</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpdkU9PwzAMxSsEEjD4AnCJxIVLR_60acNtDAaThpjE4Fp5qTsyuhaSFLRvT8YmDvhiH37vWfaLojNG-4xRdTV7nTyP-5wy0edciYTzveiIpWkWq1D7YaZSxDln9DA6dm5JKUsSRY8iP22_0ZKburPWNItrMgLnybMHbzSBpiQzC40z2Hgye0O7gpoMGqjXzjjyiP6tLUnVWjIF_Q4LLMm48biw4MM4NFZ3xrtfm-2aW_wyGt1JdFBB7fB013vRy-huNnyIJ0_34-FgEmuhch9nqca50vOkojpVc8VpxiVLSqazTHCayFKzvBIAqQ6ogoRJkBSBZ1IoLlLRiy63vh-2_ezQ-WJlnMa6hgbbzhVMhkfRXCoa0It_6LLtbLh0QzGp8lRmKlB8S2nbOmexKj6sWYFdF4wWmyCK3yCKTRDFLoggOt-KDCL-CWTGFaOp-AFLYYQO</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Ziabari, Amirkoushyar</creator><creator>Je-Hyoung Park</creator><creator>Ardestani, Ehsan K.</creator><creator>Renau, Jose</creator><creator>Sung-Mo Kang</creator><creator>Shakouri, Ali</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7TB</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20141101</creationdate><title>Power Blurring: Fast Static and Transient Thermal Analysis Method for Packaged Integrated Circuits and Power Devices</title><author>Ziabari, Amirkoushyar ; Je-Hyoung Park ; Ardestani, Ehsan K. ; Renau, Jose ; Sung-Mo Kang ; Shakouri, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-75ceb9cb4f0c59b92072614d1c7732046dc18f3aa5c75c9a416a60ea276392353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Blurring</topic><topic>Chips</topic><topic>Computation</topic><topic>Finite element method</topic><topic>Finite-element method (FEM)</topic><topic>Geometry</topic><topic>Heat</topic><topic>Heat sinks</topic><topic>heat transfer</topic><topic>Heating</topic><topic>Integrated circuits</topic><topic>integrated circuits (ICs)</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>package</topic><topic>power electronics</topic><topic>Silicon</topic><topic>temperature</topic><topic>Temperature distribution</topic><topic>Thermal analysis</topic><topic>thermal management</topic><topic>thermal simulation</topic><topic>Very large scale integration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ziabari, Amirkoushyar</creatorcontrib><creatorcontrib>Je-Hyoung Park</creatorcontrib><creatorcontrib>Ardestani, Ehsan K.</creatorcontrib><creatorcontrib>Renau, Jose</creatorcontrib><creatorcontrib>Sung-Mo Kang</creatorcontrib><creatorcontrib>Shakouri, Ali</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ziabari, Amirkoushyar</au><au>Je-Hyoung Park</au><au>Ardestani, Ehsan K.</au><au>Renau, Jose</au><au>Sung-Mo Kang</au><au>Shakouri, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Power Blurring: Fast Static and Transient Thermal Analysis Method for Packaged Integrated Circuits and Power Devices</atitle><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle><stitle>TVLSI</stitle><date>2014-11-01</date><risdate>2014</risdate><volume>22</volume><issue>11</issue><spage>2366</spage><epage>2379</epage><pages>2366-2379</pages><issn>1063-8210</issn><eissn>1557-9999</eissn><coden>IEVSE9</coden><abstract>High-temperature and temperature nonuniformity in high-performance integrated circuits (ICs) can significantly degrade chip performance and reliability. Thus, accurate temperature information is a critical factor in chip design and verification. Conventional volume grid-based techniques, such as finite-difference and finite-element methods (FEMs), are computationally expensive. In an effort to reduce the computation time, we have developed a new method, called power blurring (PB), for calculating temperature distributions using a matrix convolution technique in analogy with image blurring. The PB method considers the finite size and boundaries of the chip as well as 3-D heat spreading in the heat sink. PB is applicable to both static and transient thermal simulations. Comparative studies with a commercial FEM tool show that the PB method is accurate within 2%, with orders of magnitude speedup compared with FEM methods. PB can be applied to very fine power maps with a grid size as small as 10 μm for a fully packaged IC or submicrometer heat sources in power electronic transistor arrays. In comparison with architecture-level thermal simulators, such as HotSpot, PB provides much more accurate temperature profiles with reduced computation time.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TVLSI.2013.2293422</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-8210
ispartof IEEE transactions on very large scale integration (VLSI) systems, 2014-11, Vol.22 (11), p.2366-2379
issn 1063-8210
1557-9999
language eng
recordid cdi_proquest_journals_1616985679
source IEEE Electronic Library (IEL) Journals
subjects Blurring
Chips
Computation
Finite element method
Finite-element method (FEM)
Geometry
Heat
Heat sinks
heat transfer
Heating
Integrated circuits
integrated circuits (ICs)
Mathematical analysis
Mathematical models
package
power electronics
Silicon
temperature
Temperature distribution
Thermal analysis
thermal management
thermal simulation
Very large scale integration
title Power Blurring: Fast Static and Transient Thermal Analysis Method for Packaged Integrated Circuits and Power Devices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A27%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Power%20Blurring:%20Fast%20Static%20and%20Transient%20Thermal%20Analysis%20Method%20for%20Packaged%20Integrated%20Circuits%20and%20Power%20Devices&rft.jtitle=IEEE%20transactions%20on%20very%20large%20scale%20integration%20(VLSI)%20systems&rft.au=Ziabari,%20Amirkoushyar&rft.date=2014-11-01&rft.volume=22&rft.issue=11&rft.spage=2366&rft.epage=2379&rft.pages=2366-2379&rft.issn=1063-8210&rft.eissn=1557-9999&rft.coden=IEVSE9&rft_id=info:doi/10.1109/TVLSI.2013.2293422&rft_dat=%3Cproquest_ieee_%3E1642208690%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c398t-75ceb9cb4f0c59b92072614d1c7732046dc18f3aa5c75c9a416a60ea276392353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1616985679&rft_id=info:pmid/&rft_ieee_id=6729105&rfr_iscdi=true