Loading…

Using 'Big Data' for analytics and decision support

People and the computers they use are generating large amounts of varied data. The phenomenon of capturing and trying to use all of the semi-structured and unstructured data has been called by vendors and bloggers 'Big Data'. Organisations can capture and store data of many types from almo...

Full description

Saved in:
Bibliographic Details
Published in:Journal of decision systems 2014-04, Vol.23 (2), p.222-228
Main Author: Power, Daniel J.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c466t-601041c67fb4d125eacce5592a6452fa33478d28627027e08a8657841afcd4b93
cites
container_end_page 228
container_issue 2
container_start_page 222
container_title Journal of decision systems
container_volume 23
creator Power, Daniel J.
description People and the computers they use are generating large amounts of varied data. The phenomenon of capturing and trying to use all of the semi-structured and unstructured data has been called by vendors and bloggers 'Big Data'. Organisations can capture and store data of many types from almost any source, but capturing and storing data only adds value when it has a useful purpose. Big Data must be used to provide input to analytics and decision support capabilities if it is to create real value for organisations. Some bloggers, industry leaders and academics have become disillusioned by the term Big Data. It is a marketing term and not a technical term. More descriptive terms like unstructured data, process data and machine data are more useful for information technology (IT) professionals. Researchers need to study and document use cases that explain how specific, novel data, so-called Big Data, can be used to support decision-making.
doi_str_mv 10.1080/12460125.2014.888848
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_journals_1626711746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3503250831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-601041c67fb4d125eacce5592a6452fa33478d28627027e08a8657841afcd4b93</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKvfwMOCSE9bk2w2yZ5E618oeLHnMM0mJWW7WZMt0m9vlrUezWUC83szbx5C1wTPCZb4jlDGMaHlnGLC5jI9Jk_QhBLCc4FLeoomA5IPzDm6iHGLcclSe4KKVXTtJps9uk32BD3MMutDBi00h97pmH51VhvtovNtFvdd50N_ic4sNNFc_dYpWr08fy7e8uXH6_viYZlrxnmfJ0uYEc2FXbM6bTagtSnLigJnJbVQFEzImkpOBabCYAmSl0IyAlbXbF0VU3Qzzu2C_9qb2Kut34dkLSrCKReECMYTxUZKBx9jMFZ1we0gHBTBaohHHeNRQzxqjCfJbn-HQ9TQ2ABtuvJPSyXDVUUHE_cj59qUzA6-fWhq1cOh8eEoKv7d9AM8j3V7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1626711746</pqid></control><display><type>article</type><title>Using 'Big Data' for analytics and decision support</title><source>ABI/INFORM Collection</source><source>Taylor and Francis Science and Technology Collection</source><creator>Power, Daniel J.</creator><creatorcontrib>Power, Daniel J.</creatorcontrib><description>People and the computers they use are generating large amounts of varied data. The phenomenon of capturing and trying to use all of the semi-structured and unstructured data has been called by vendors and bloggers 'Big Data'. Organisations can capture and store data of many types from almost any source, but capturing and storing data only adds value when it has a useful purpose. Big Data must be used to provide input to analytics and decision support capabilities if it is to create real value for organisations. Some bloggers, industry leaders and academics have become disillusioned by the term Big Data. It is a marketing term and not a technical term. More descriptive terms like unstructured data, process data and machine data are more useful for information technology (IT) professionals. Researchers need to study and document use cases that explain how specific, novel data, so-called Big Data, can be used to support decision-making.</description><identifier>ISSN: 1246-0125</identifier><identifier>EISSN: 2116-7052</identifier><identifier>DOI: 10.1080/12460125.2014.888848</identifier><language>eng</language><publisher>Paris: Taylor &amp; Francis</publisher><subject>Analytics ; Applied sciences ; Big Data ; Chief executive officers ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Data processing. List processing. Character string processing ; Datasets ; Decision making ; decision support ; Decision theory. Utility theory ; Exact sciences and technology ; Information systems ; Information systems. Data bases ; Information technology ; machine data ; Memory organisation. Data processing ; Operational research and scientific management ; Operational research. Management science ; Software ; Studies ; Velocity</subject><ispartof>Journal of decision systems, 2014-04, Vol.23 (2), p.222-228</ispartof><rights>2014 Taylor &amp; Francis 2014</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Taylor &amp; Francis Ltd. 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-601041c67fb4d125eacce5592a6452fa33478d28627027e08a8657841afcd4b93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1626711746/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1626711746?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11669,27903,27904,36039,44342,74641</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28409929$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Power, Daniel J.</creatorcontrib><title>Using 'Big Data' for analytics and decision support</title><title>Journal of decision systems</title><description>People and the computers they use are generating large amounts of varied data. The phenomenon of capturing and trying to use all of the semi-structured and unstructured data has been called by vendors and bloggers 'Big Data'. Organisations can capture and store data of many types from almost any source, but capturing and storing data only adds value when it has a useful purpose. Big Data must be used to provide input to analytics and decision support capabilities if it is to create real value for organisations. Some bloggers, industry leaders and academics have become disillusioned by the term Big Data. It is a marketing term and not a technical term. More descriptive terms like unstructured data, process data and machine data are more useful for information technology (IT) professionals. Researchers need to study and document use cases that explain how specific, novel data, so-called Big Data, can be used to support decision-making.</description><subject>Analytics</subject><subject>Applied sciences</subject><subject>Big Data</subject><subject>Chief executive officers</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Data processing. List processing. Character string processing</subject><subject>Datasets</subject><subject>Decision making</subject><subject>decision support</subject><subject>Decision theory. Utility theory</subject><subject>Exact sciences and technology</subject><subject>Information systems</subject><subject>Information systems. Data bases</subject><subject>Information technology</subject><subject>machine data</subject><subject>Memory organisation. Data processing</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Software</subject><subject>Studies</subject><subject>Velocity</subject><issn>1246-0125</issn><issn>2116-7052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kE9LAzEQxYMoWKvfwMOCSE9bk2w2yZ5E618oeLHnMM0mJWW7WZMt0m9vlrUezWUC83szbx5C1wTPCZb4jlDGMaHlnGLC5jI9Jk_QhBLCc4FLeoomA5IPzDm6iHGLcclSe4KKVXTtJps9uk32BD3MMutDBi00h97pmH51VhvtovNtFvdd50N_ic4sNNFc_dYpWr08fy7e8uXH6_viYZlrxnmfJ0uYEc2FXbM6bTagtSnLigJnJbVQFEzImkpOBabCYAmSl0IyAlbXbF0VU3Qzzu2C_9qb2Kut34dkLSrCKReECMYTxUZKBx9jMFZ1we0gHBTBaohHHeNRQzxqjCfJbn-HQ9TQ2ABtuvJPSyXDVUUHE_cj59qUzA6-fWhq1cOh8eEoKv7d9AM8j3V7</recordid><startdate>20140403</startdate><enddate>20140403</enddate><creator>Power, Daniel J.</creator><general>Taylor &amp; Francis</general><general>Lavoisier</general><general>Taylor &amp; Francis Ltd</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20140403</creationdate><title>Using 'Big Data' for analytics and decision support</title><author>Power, Daniel J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-601041c67fb4d125eacce5592a6452fa33478d28627027e08a8657841afcd4b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analytics</topic><topic>Applied sciences</topic><topic>Big Data</topic><topic>Chief executive officers</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Data processing. List processing. Character string processing</topic><topic>Datasets</topic><topic>Decision making</topic><topic>decision support</topic><topic>Decision theory. Utility theory</topic><topic>Exact sciences and technology</topic><topic>Information systems</topic><topic>Information systems. Data bases</topic><topic>Information technology</topic><topic>machine data</topic><topic>Memory organisation. Data processing</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Software</topic><topic>Studies</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Power, Daniel J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of decision systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Power, Daniel J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using 'Big Data' for analytics and decision support</atitle><jtitle>Journal of decision systems</jtitle><date>2014-04-03</date><risdate>2014</risdate><volume>23</volume><issue>2</issue><spage>222</spage><epage>228</epage><pages>222-228</pages><issn>1246-0125</issn><eissn>2116-7052</eissn><abstract>People and the computers they use are generating large amounts of varied data. The phenomenon of capturing and trying to use all of the semi-structured and unstructured data has been called by vendors and bloggers 'Big Data'. Organisations can capture and store data of many types from almost any source, but capturing and storing data only adds value when it has a useful purpose. Big Data must be used to provide input to analytics and decision support capabilities if it is to create real value for organisations. Some bloggers, industry leaders and academics have become disillusioned by the term Big Data. It is a marketing term and not a technical term. More descriptive terms like unstructured data, process data and machine data are more useful for information technology (IT) professionals. Researchers need to study and document use cases that explain how specific, novel data, so-called Big Data, can be used to support decision-making.</abstract><cop>Paris</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/12460125.2014.888848</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1246-0125
ispartof Journal of decision systems, 2014-04, Vol.23 (2), p.222-228
issn 1246-0125
2116-7052
language eng
recordid cdi_proquest_journals_1626711746
source ABI/INFORM Collection; Taylor and Francis Science and Technology Collection
subjects Analytics
Applied sciences
Big Data
Chief executive officers
Computer science
control theory
systems
Computer systems and distributed systems. User interface
Data processing. List processing. Character string processing
Datasets
Decision making
decision support
Decision theory. Utility theory
Exact sciences and technology
Information systems
Information systems. Data bases
Information technology
machine data
Memory organisation. Data processing
Operational research and scientific management
Operational research. Management science
Software
Studies
Velocity
title Using 'Big Data' for analytics and decision support
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A29%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20'Big%20Data'%20for%20analytics%20and%20decision%20support&rft.jtitle=Journal%20of%20decision%20systems&rft.au=Power,%20Daniel%20J.&rft.date=2014-04-03&rft.volume=23&rft.issue=2&rft.spage=222&rft.epage=228&rft.pages=222-228&rft.issn=1246-0125&rft.eissn=2116-7052&rft_id=info:doi/10.1080/12460125.2014.888848&rft_dat=%3Cproquest_pasca%3E3503250831%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c466t-601041c67fb4d125eacce5592a6452fa33478d28627027e08a8657841afcd4b93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1626711746&rft_id=info:pmid/&rfr_iscdi=true