Loading…
Using 'Big Data' for analytics and decision support
People and the computers they use are generating large amounts of varied data. The phenomenon of capturing and trying to use all of the semi-structured and unstructured data has been called by vendors and bloggers 'Big Data'. Organisations can capture and store data of many types from almo...
Saved in:
Published in: | Journal of decision systems 2014-04, Vol.23 (2), p.222-228 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c466t-601041c67fb4d125eacce5592a6452fa33478d28627027e08a8657841afcd4b93 |
---|---|
cites | |
container_end_page | 228 |
container_issue | 2 |
container_start_page | 222 |
container_title | Journal of decision systems |
container_volume | 23 |
creator | Power, Daniel J. |
description | People and the computers they use are generating large amounts of varied data. The phenomenon of capturing and trying to use all of the semi-structured and unstructured data has been called by vendors and bloggers 'Big Data'. Organisations can capture and store data of many types from almost any source, but capturing and storing data only adds value when it has a useful purpose. Big Data must be used to provide input to analytics and decision support capabilities if it is to create real value for organisations. Some bloggers, industry leaders and academics have become disillusioned by the term Big Data. It is a marketing term and not a technical term. More descriptive terms like unstructured data, process data and machine data are more useful for information technology (IT) professionals. Researchers need to study and document use cases that explain how specific, novel data, so-called Big Data, can be used to support decision-making. |
doi_str_mv | 10.1080/12460125.2014.888848 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_journals_1626711746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3503250831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-601041c67fb4d125eacce5592a6452fa33478d28627027e08a8657841afcd4b93</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKvfwMOCSE9bk2w2yZ5E618oeLHnMM0mJWW7WZMt0m9vlrUezWUC83szbx5C1wTPCZb4jlDGMaHlnGLC5jI9Jk_QhBLCc4FLeoomA5IPzDm6iHGLcclSe4KKVXTtJps9uk32BD3MMutDBi00h97pmH51VhvtovNtFvdd50N_ic4sNNFc_dYpWr08fy7e8uXH6_viYZlrxnmfJ0uYEc2FXbM6bTagtSnLigJnJbVQFEzImkpOBabCYAmSl0IyAlbXbF0VU3Qzzu2C_9qb2Kut34dkLSrCKReECMYTxUZKBx9jMFZ1we0gHBTBaohHHeNRQzxqjCfJbn-HQ9TQ2ABtuvJPSyXDVUUHE_cj59qUzA6-fWhq1cOh8eEoKv7d9AM8j3V7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1626711746</pqid></control><display><type>article</type><title>Using 'Big Data' for analytics and decision support</title><source>ABI/INFORM Collection</source><source>Taylor and Francis Science and Technology Collection</source><creator>Power, Daniel J.</creator><creatorcontrib>Power, Daniel J.</creatorcontrib><description>People and the computers they use are generating large amounts of varied data. The phenomenon of capturing and trying to use all of the semi-structured and unstructured data has been called by vendors and bloggers 'Big Data'. Organisations can capture and store data of many types from almost any source, but capturing and storing data only adds value when it has a useful purpose. Big Data must be used to provide input to analytics and decision support capabilities if it is to create real value for organisations. Some bloggers, industry leaders and academics have become disillusioned by the term Big Data. It is a marketing term and not a technical term. More descriptive terms like unstructured data, process data and machine data are more useful for information technology (IT) professionals. Researchers need to study and document use cases that explain how specific, novel data, so-called Big Data, can be used to support decision-making.</description><identifier>ISSN: 1246-0125</identifier><identifier>EISSN: 2116-7052</identifier><identifier>DOI: 10.1080/12460125.2014.888848</identifier><language>eng</language><publisher>Paris: Taylor & Francis</publisher><subject>Analytics ; Applied sciences ; Big Data ; Chief executive officers ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Data processing. List processing. Character string processing ; Datasets ; Decision making ; decision support ; Decision theory. Utility theory ; Exact sciences and technology ; Information systems ; Information systems. Data bases ; Information technology ; machine data ; Memory organisation. Data processing ; Operational research and scientific management ; Operational research. Management science ; Software ; Studies ; Velocity</subject><ispartof>Journal of decision systems, 2014-04, Vol.23 (2), p.222-228</ispartof><rights>2014 Taylor & Francis 2014</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Taylor & Francis Ltd. 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-601041c67fb4d125eacce5592a6452fa33478d28627027e08a8657841afcd4b93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1626711746/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1626711746?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11669,27903,27904,36039,44342,74641</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28409929$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Power, Daniel J.</creatorcontrib><title>Using 'Big Data' for analytics and decision support</title><title>Journal of decision systems</title><description>People and the computers they use are generating large amounts of varied data. The phenomenon of capturing and trying to use all of the semi-structured and unstructured data has been called by vendors and bloggers 'Big Data'. Organisations can capture and store data of many types from almost any source, but capturing and storing data only adds value when it has a useful purpose. Big Data must be used to provide input to analytics and decision support capabilities if it is to create real value for organisations. Some bloggers, industry leaders and academics have become disillusioned by the term Big Data. It is a marketing term and not a technical term. More descriptive terms like unstructured data, process data and machine data are more useful for information technology (IT) professionals. Researchers need to study and document use cases that explain how specific, novel data, so-called Big Data, can be used to support decision-making.</description><subject>Analytics</subject><subject>Applied sciences</subject><subject>Big Data</subject><subject>Chief executive officers</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Data processing. List processing. Character string processing</subject><subject>Datasets</subject><subject>Decision making</subject><subject>decision support</subject><subject>Decision theory. Utility theory</subject><subject>Exact sciences and technology</subject><subject>Information systems</subject><subject>Information systems. Data bases</subject><subject>Information technology</subject><subject>machine data</subject><subject>Memory organisation. Data processing</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Software</subject><subject>Studies</subject><subject>Velocity</subject><issn>1246-0125</issn><issn>2116-7052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kE9LAzEQxYMoWKvfwMOCSE9bk2w2yZ5E618oeLHnMM0mJWW7WZMt0m9vlrUezWUC83szbx5C1wTPCZb4jlDGMaHlnGLC5jI9Jk_QhBLCc4FLeoomA5IPzDm6iHGLcclSe4KKVXTtJps9uk32BD3MMutDBi00h97pmH51VhvtovNtFvdd50N_ic4sNNFc_dYpWr08fy7e8uXH6_viYZlrxnmfJ0uYEc2FXbM6bTagtSnLigJnJbVQFEzImkpOBabCYAmSl0IyAlbXbF0VU3Qzzu2C_9qb2Kut34dkLSrCKReECMYTxUZKBx9jMFZ1we0gHBTBaohHHeNRQzxqjCfJbn-HQ9TQ2ABtuvJPSyXDVUUHE_cj59qUzA6-fWhq1cOh8eEoKv7d9AM8j3V7</recordid><startdate>20140403</startdate><enddate>20140403</enddate><creator>Power, Daniel J.</creator><general>Taylor & Francis</general><general>Lavoisier</general><general>Taylor & Francis Ltd</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20140403</creationdate><title>Using 'Big Data' for analytics and decision support</title><author>Power, Daniel J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-601041c67fb4d125eacce5592a6452fa33478d28627027e08a8657841afcd4b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analytics</topic><topic>Applied sciences</topic><topic>Big Data</topic><topic>Chief executive officers</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Data processing. List processing. Character string processing</topic><topic>Datasets</topic><topic>Decision making</topic><topic>decision support</topic><topic>Decision theory. Utility theory</topic><topic>Exact sciences and technology</topic><topic>Information systems</topic><topic>Information systems. Data bases</topic><topic>Information technology</topic><topic>machine data</topic><topic>Memory organisation. Data processing</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Software</topic><topic>Studies</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Power, Daniel J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>ProQuest Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of decision systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Power, Daniel J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using 'Big Data' for analytics and decision support</atitle><jtitle>Journal of decision systems</jtitle><date>2014-04-03</date><risdate>2014</risdate><volume>23</volume><issue>2</issue><spage>222</spage><epage>228</epage><pages>222-228</pages><issn>1246-0125</issn><eissn>2116-7052</eissn><abstract>People and the computers they use are generating large amounts of varied data. The phenomenon of capturing and trying to use all of the semi-structured and unstructured data has been called by vendors and bloggers 'Big Data'. Organisations can capture and store data of many types from almost any source, but capturing and storing data only adds value when it has a useful purpose. Big Data must be used to provide input to analytics and decision support capabilities if it is to create real value for organisations. Some bloggers, industry leaders and academics have become disillusioned by the term Big Data. It is a marketing term and not a technical term. More descriptive terms like unstructured data, process data and machine data are more useful for information technology (IT) professionals. Researchers need to study and document use cases that explain how specific, novel data, so-called Big Data, can be used to support decision-making.</abstract><cop>Paris</cop><pub>Taylor & Francis</pub><doi>10.1080/12460125.2014.888848</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1246-0125 |
ispartof | Journal of decision systems, 2014-04, Vol.23 (2), p.222-228 |
issn | 1246-0125 2116-7052 |
language | eng |
recordid | cdi_proquest_journals_1626711746 |
source | ABI/INFORM Collection; Taylor and Francis Science and Technology Collection |
subjects | Analytics Applied sciences Big Data Chief executive officers Computer science control theory systems Computer systems and distributed systems. User interface Data processing. List processing. Character string processing Datasets Decision making decision support Decision theory. Utility theory Exact sciences and technology Information systems Information systems. Data bases Information technology machine data Memory organisation. Data processing Operational research and scientific management Operational research. Management science Software Studies Velocity |
title | Using 'Big Data' for analytics and decision support |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A29%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20'Big%20Data'%20for%20analytics%20and%20decision%20support&rft.jtitle=Journal%20of%20decision%20systems&rft.au=Power,%20Daniel%20J.&rft.date=2014-04-03&rft.volume=23&rft.issue=2&rft.spage=222&rft.epage=228&rft.pages=222-228&rft.issn=1246-0125&rft.eissn=2116-7052&rft_id=info:doi/10.1080/12460125.2014.888848&rft_dat=%3Cproquest_pasca%3E3503250831%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c466t-601041c67fb4d125eacce5592a6452fa33478d28627027e08a8657841afcd4b93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1626711746&rft_id=info:pmid/&rfr_iscdi=true |