Loading…
PALDi: Online Load Disaggregation via Particle Filtering
Smart metering and fine-grained energy data are one of the major enablers for future smart grid and improved energy efficiency in smart homes. Using the information provided by smart meter power draw, valuable information can be extracted as disaggregated appliance power draws by non-intrusive load...
Saved in:
Published in: | IEEE transactions on instrumentation and measurement 2015-02, Vol.64 (2), p.467-477 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c511t-da344470735f7c4444094723bed376c6bd4eba565f4c6177f98923581c5f93c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c511t-da344470735f7c4444094723bed376c6bd4eba565f4c6177f98923581c5f93c3 |
container_end_page | 477 |
container_issue | 2 |
container_start_page | 467 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 64 |
creator | Egarter, Dominik Bhuvana, Venkata Pathuri Elmenreich, Wilfried |
description | Smart metering and fine-grained energy data are one of the major enablers for future smart grid and improved energy efficiency in smart homes. Using the information provided by smart meter power draw, valuable information can be extracted as disaggregated appliance power draws by non-intrusive load monitoring (NILM). NILM allows to identify appliances according to their power characteristics in the total power consumption of a household, measured by one sensor, the smart meter. In this paper, we present an NILM approach, where the appliance states are estimated by particle filtering (PF). PF is used for nonlinear and non-Gaussian disturbed problems and is suitable to estimate the appliance state. ON/OFF appliances, multistate appliances, or combinations of them are modeled by hidden Markov models, and their combinations result in a factorial hidden Markov model modeling the household power demand. We evaluate the PF-based NILM approach on synthetic and on real data from a well-known dataset to show that our approach achieves an accuracy of 90% on real household power draws. |
doi_str_mv | 10.1109/TIM.2014.2344373 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1642122539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6881709</ieee_id><sourcerecordid>3545845341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-da344470735f7c4444094723bed376c6bd4eba565f4c6177f98923581c5f93c3</originalsourceid><addsrcrecordid>eNpdkM9LwzAYhoMoOKd3wUvBi5fOL78bb2NzOqhsh91DlqYlo2tn0gn-92ZMPHj6vsPzvrw8CN1jmGAM6nmz_JgQwGxCKGNU0gs0wpzLXAlBLtEIABe5Ylxco5sYdwAgBZMjVKyn5dy_ZKuu9Z3Lyt5U2dxH0zTBNWbwfZd9eZOtTRi8bV228O3ggu-aW3RVmza6u987RpvF62b2npert-VsWuaWYzzklUlzmARJeS1tehkoJgnduopKYcW2Ym5ruOA1swJLWatCEcoLbHmtqKVj9HSuPYT-8-jioPc-Wte2pnP9MWosBECBKeMJffyH7vpj6NK4RDGCCeFUJQrOlA19jMHV-hD83oRvjUGfTOpkUp9M6l-TKfJwjnjn3B8uigJLUPQHrCVruQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642122539</pqid></control><display><type>article</type><title>PALDi: Online Load Disaggregation via Particle Filtering</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Egarter, Dominik ; Bhuvana, Venkata Pathuri ; Elmenreich, Wilfried</creator><creatorcontrib>Egarter, Dominik ; Bhuvana, Venkata Pathuri ; Elmenreich, Wilfried</creatorcontrib><description>Smart metering and fine-grained energy data are one of the major enablers for future smart grid and improved energy efficiency in smart homes. Using the information provided by smart meter power draw, valuable information can be extracted as disaggregated appliance power draws by non-intrusive load monitoring (NILM). NILM allows to identify appliances according to their power characteristics in the total power consumption of a household, measured by one sensor, the smart meter. In this paper, we present an NILM approach, where the appliance states are estimated by particle filtering (PF). PF is used for nonlinear and non-Gaussian disturbed problems and is suitable to estimate the appliance state. ON/OFF appliances, multistate appliances, or combinations of them are modeled by hidden Markov models, and their combinations result in a factorial hidden Markov model modeling the household power demand. We evaluate the PF-based NILM approach on synthetic and on real data from a well-known dataset to show that our approach achieves an accuracy of 90% on real household power draws.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2014.2344373</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Appliances ; Approximation methods ; Computational modeling ; Energy management ; Factorial hidden Markov model (FHMM) ; Filtering ; Filtration ; hidden Markov model (HMM) ; Hidden Markov models ; Home appliances ; Households ; Instrumentation ; load disaggregation ; Load modeling ; Markov analysis ; Mathematical models ; Measurement ; Measuring instruments ; Meters ; non-intrusive load monitoring (NILM) ; particle filter (PF) ; Power demand ; state estimation</subject><ispartof>IEEE transactions on instrumentation and measurement, 2015-02, Vol.64 (2), p.467-477</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-da344470735f7c4444094723bed376c6bd4eba565f4c6177f98923581c5f93c3</citedby><cites>FETCH-LOGICAL-c511t-da344470735f7c4444094723bed376c6bd4eba565f4c6177f98923581c5f93c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6881709$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Egarter, Dominik</creatorcontrib><creatorcontrib>Bhuvana, Venkata Pathuri</creatorcontrib><creatorcontrib>Elmenreich, Wilfried</creatorcontrib><title>PALDi: Online Load Disaggregation via Particle Filtering</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Smart metering and fine-grained energy data are one of the major enablers for future smart grid and improved energy efficiency in smart homes. Using the information provided by smart meter power draw, valuable information can be extracted as disaggregated appliance power draws by non-intrusive load monitoring (NILM). NILM allows to identify appliances according to their power characteristics in the total power consumption of a household, measured by one sensor, the smart meter. In this paper, we present an NILM approach, where the appliance states are estimated by particle filtering (PF). PF is used for nonlinear and non-Gaussian disturbed problems and is suitable to estimate the appliance state. ON/OFF appliances, multistate appliances, or combinations of them are modeled by hidden Markov models, and their combinations result in a factorial hidden Markov model modeling the household power demand. We evaluate the PF-based NILM approach on synthetic and on real data from a well-known dataset to show that our approach achieves an accuracy of 90% on real household power draws.</description><subject>Appliances</subject><subject>Approximation methods</subject><subject>Computational modeling</subject><subject>Energy management</subject><subject>Factorial hidden Markov model (FHMM)</subject><subject>Filtering</subject><subject>Filtration</subject><subject>hidden Markov model (HMM)</subject><subject>Hidden Markov models</subject><subject>Home appliances</subject><subject>Households</subject><subject>Instrumentation</subject><subject>load disaggregation</subject><subject>Load modeling</subject><subject>Markov analysis</subject><subject>Mathematical models</subject><subject>Measurement</subject><subject>Measuring instruments</subject><subject>Meters</subject><subject>non-intrusive load monitoring (NILM)</subject><subject>particle filter (PF)</subject><subject>Power demand</subject><subject>state estimation</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdkM9LwzAYhoMoOKd3wUvBi5fOL78bb2NzOqhsh91DlqYlo2tn0gn-92ZMPHj6vsPzvrw8CN1jmGAM6nmz_JgQwGxCKGNU0gs0wpzLXAlBLtEIABe5Ylxco5sYdwAgBZMjVKyn5dy_ZKuu9Z3Lyt5U2dxH0zTBNWbwfZd9eZOtTRi8bV228O3ggu-aW3RVmza6u987RpvF62b2npert-VsWuaWYzzklUlzmARJeS1tehkoJgnduopKYcW2Ym5ruOA1swJLWatCEcoLbHmtqKVj9HSuPYT-8-jioPc-Wte2pnP9MWosBECBKeMJffyH7vpj6NK4RDGCCeFUJQrOlA19jMHV-hD83oRvjUGfTOpkUp9M6l-TKfJwjnjn3B8uigJLUPQHrCVruQ</recordid><startdate>20150201</startdate><enddate>20150201</enddate><creator>Egarter, Dominik</creator><creator>Bhuvana, Venkata Pathuri</creator><creator>Elmenreich, Wilfried</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7SC</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150201</creationdate><title>PALDi: Online Load Disaggregation via Particle Filtering</title><author>Egarter, Dominik ; Bhuvana, Venkata Pathuri ; Elmenreich, Wilfried</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-da344470735f7c4444094723bed376c6bd4eba565f4c6177f98923581c5f93c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Appliances</topic><topic>Approximation methods</topic><topic>Computational modeling</topic><topic>Energy management</topic><topic>Factorial hidden Markov model (FHMM)</topic><topic>Filtering</topic><topic>Filtration</topic><topic>hidden Markov model (HMM)</topic><topic>Hidden Markov models</topic><topic>Home appliances</topic><topic>Households</topic><topic>Instrumentation</topic><topic>load disaggregation</topic><topic>Load modeling</topic><topic>Markov analysis</topic><topic>Mathematical models</topic><topic>Measurement</topic><topic>Measuring instruments</topic><topic>Meters</topic><topic>non-intrusive load monitoring (NILM)</topic><topic>particle filter (PF)</topic><topic>Power demand</topic><topic>state estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Egarter, Dominik</creatorcontrib><creatorcontrib>Bhuvana, Venkata Pathuri</creatorcontrib><creatorcontrib>Elmenreich, Wilfried</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Egarter, Dominik</au><au>Bhuvana, Venkata Pathuri</au><au>Elmenreich, Wilfried</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PALDi: Online Load Disaggregation via Particle Filtering</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2015-02-01</date><risdate>2015</risdate><volume>64</volume><issue>2</issue><spage>467</spage><epage>477</epage><pages>467-477</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Smart metering and fine-grained energy data are one of the major enablers for future smart grid and improved energy efficiency in smart homes. Using the information provided by smart meter power draw, valuable information can be extracted as disaggregated appliance power draws by non-intrusive load monitoring (NILM). NILM allows to identify appliances according to their power characteristics in the total power consumption of a household, measured by one sensor, the smart meter. In this paper, we present an NILM approach, where the appliance states are estimated by particle filtering (PF). PF is used for nonlinear and non-Gaussian disturbed problems and is suitable to estimate the appliance state. ON/OFF appliances, multistate appliances, or combinations of them are modeled by hidden Markov models, and their combinations result in a factorial hidden Markov model modeling the household power demand. We evaluate the PF-based NILM approach on synthetic and on real data from a well-known dataset to show that our approach achieves an accuracy of 90% on real household power draws.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2014.2344373</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2015-02, Vol.64 (2), p.467-477 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_proquest_journals_1642122539 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Appliances Approximation methods Computational modeling Energy management Factorial hidden Markov model (FHMM) Filtering Filtration hidden Markov model (HMM) Hidden Markov models Home appliances Households Instrumentation load disaggregation Load modeling Markov analysis Mathematical models Measurement Measuring instruments Meters non-intrusive load monitoring (NILM) particle filter (PF) Power demand state estimation |
title | PALDi: Online Load Disaggregation via Particle Filtering |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T01%3A28%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PALDi:%20Online%20Load%20Disaggregation%20via%20Particle%20Filtering&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Egarter,%20Dominik&rft.date=2015-02-01&rft.volume=64&rft.issue=2&rft.spage=467&rft.epage=477&rft.pages=467-477&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2014.2344373&rft_dat=%3Cproquest_cross%3E3545845341%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c511t-da344470735f7c4444094723bed376c6bd4eba565f4c6177f98923581c5f93c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1642122539&rft_id=info:pmid/&rft_ieee_id=6881709&rfr_iscdi=true |