Loading…

PALDi: Online Load Disaggregation via Particle Filtering

Smart metering and fine-grained energy data are one of the major enablers for future smart grid and improved energy efficiency in smart homes. Using the information provided by smart meter power draw, valuable information can be extracted as disaggregated appliance power draws by non-intrusive load...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on instrumentation and measurement 2015-02, Vol.64 (2), p.467-477
Main Authors: Egarter, Dominik, Bhuvana, Venkata Pathuri, Elmenreich, Wilfried
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c511t-da344470735f7c4444094723bed376c6bd4eba565f4c6177f98923581c5f93c3
cites cdi_FETCH-LOGICAL-c511t-da344470735f7c4444094723bed376c6bd4eba565f4c6177f98923581c5f93c3
container_end_page 477
container_issue 2
container_start_page 467
container_title IEEE transactions on instrumentation and measurement
container_volume 64
creator Egarter, Dominik
Bhuvana, Venkata Pathuri
Elmenreich, Wilfried
description Smart metering and fine-grained energy data are one of the major enablers for future smart grid and improved energy efficiency in smart homes. Using the information provided by smart meter power draw, valuable information can be extracted as disaggregated appliance power draws by non-intrusive load monitoring (NILM). NILM allows to identify appliances according to their power characteristics in the total power consumption of a household, measured by one sensor, the smart meter. In this paper, we present an NILM approach, where the appliance states are estimated by particle filtering (PF). PF is used for nonlinear and non-Gaussian disturbed problems and is suitable to estimate the appliance state. ON/OFF appliances, multistate appliances, or combinations of them are modeled by hidden Markov models, and their combinations result in a factorial hidden Markov model modeling the household power demand. We evaluate the PF-based NILM approach on synthetic and on real data from a well-known dataset to show that our approach achieves an accuracy of 90% on real household power draws.
doi_str_mv 10.1109/TIM.2014.2344373
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1642122539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6881709</ieee_id><sourcerecordid>3545845341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-da344470735f7c4444094723bed376c6bd4eba565f4c6177f98923581c5f93c3</originalsourceid><addsrcrecordid>eNpdkM9LwzAYhoMoOKd3wUvBi5fOL78bb2NzOqhsh91DlqYlo2tn0gn-92ZMPHj6vsPzvrw8CN1jmGAM6nmz_JgQwGxCKGNU0gs0wpzLXAlBLtEIABe5Ylxco5sYdwAgBZMjVKyn5dy_ZKuu9Z3Lyt5U2dxH0zTBNWbwfZd9eZOtTRi8bV228O3ggu-aW3RVmza6u987RpvF62b2npert-VsWuaWYzzklUlzmARJeS1tehkoJgnduopKYcW2Ym5ruOA1swJLWatCEcoLbHmtqKVj9HSuPYT-8-jioPc-Wte2pnP9MWosBECBKeMJffyH7vpj6NK4RDGCCeFUJQrOlA19jMHV-hD83oRvjUGfTOpkUp9M6l-TKfJwjnjn3B8uigJLUPQHrCVruQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642122539</pqid></control><display><type>article</type><title>PALDi: Online Load Disaggregation via Particle Filtering</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Egarter, Dominik ; Bhuvana, Venkata Pathuri ; Elmenreich, Wilfried</creator><creatorcontrib>Egarter, Dominik ; Bhuvana, Venkata Pathuri ; Elmenreich, Wilfried</creatorcontrib><description>Smart metering and fine-grained energy data are one of the major enablers for future smart grid and improved energy efficiency in smart homes. Using the information provided by smart meter power draw, valuable information can be extracted as disaggregated appliance power draws by non-intrusive load monitoring (NILM). NILM allows to identify appliances according to their power characteristics in the total power consumption of a household, measured by one sensor, the smart meter. In this paper, we present an NILM approach, where the appliance states are estimated by particle filtering (PF). PF is used for nonlinear and non-Gaussian disturbed problems and is suitable to estimate the appliance state. ON/OFF appliances, multistate appliances, or combinations of them are modeled by hidden Markov models, and their combinations result in a factorial hidden Markov model modeling the household power demand. We evaluate the PF-based NILM approach on synthetic and on real data from a well-known dataset to show that our approach achieves an accuracy of 90% on real household power draws.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2014.2344373</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Appliances ; Approximation methods ; Computational modeling ; Energy management ; Factorial hidden Markov model (FHMM) ; Filtering ; Filtration ; hidden Markov model (HMM) ; Hidden Markov models ; Home appliances ; Households ; Instrumentation ; load disaggregation ; Load modeling ; Markov analysis ; Mathematical models ; Measurement ; Measuring instruments ; Meters ; non-intrusive load monitoring (NILM) ; particle filter (PF) ; Power demand ; state estimation</subject><ispartof>IEEE transactions on instrumentation and measurement, 2015-02, Vol.64 (2), p.467-477</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-da344470735f7c4444094723bed376c6bd4eba565f4c6177f98923581c5f93c3</citedby><cites>FETCH-LOGICAL-c511t-da344470735f7c4444094723bed376c6bd4eba565f4c6177f98923581c5f93c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6881709$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Egarter, Dominik</creatorcontrib><creatorcontrib>Bhuvana, Venkata Pathuri</creatorcontrib><creatorcontrib>Elmenreich, Wilfried</creatorcontrib><title>PALDi: Online Load Disaggregation via Particle Filtering</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Smart metering and fine-grained energy data are one of the major enablers for future smart grid and improved energy efficiency in smart homes. Using the information provided by smart meter power draw, valuable information can be extracted as disaggregated appliance power draws by non-intrusive load monitoring (NILM). NILM allows to identify appliances according to their power characteristics in the total power consumption of a household, measured by one sensor, the smart meter. In this paper, we present an NILM approach, where the appliance states are estimated by particle filtering (PF). PF is used for nonlinear and non-Gaussian disturbed problems and is suitable to estimate the appliance state. ON/OFF appliances, multistate appliances, or combinations of them are modeled by hidden Markov models, and their combinations result in a factorial hidden Markov model modeling the household power demand. We evaluate the PF-based NILM approach on synthetic and on real data from a well-known dataset to show that our approach achieves an accuracy of 90% on real household power draws.</description><subject>Appliances</subject><subject>Approximation methods</subject><subject>Computational modeling</subject><subject>Energy management</subject><subject>Factorial hidden Markov model (FHMM)</subject><subject>Filtering</subject><subject>Filtration</subject><subject>hidden Markov model (HMM)</subject><subject>Hidden Markov models</subject><subject>Home appliances</subject><subject>Households</subject><subject>Instrumentation</subject><subject>load disaggregation</subject><subject>Load modeling</subject><subject>Markov analysis</subject><subject>Mathematical models</subject><subject>Measurement</subject><subject>Measuring instruments</subject><subject>Meters</subject><subject>non-intrusive load monitoring (NILM)</subject><subject>particle filter (PF)</subject><subject>Power demand</subject><subject>state estimation</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdkM9LwzAYhoMoOKd3wUvBi5fOL78bb2NzOqhsh91DlqYlo2tn0gn-92ZMPHj6vsPzvrw8CN1jmGAM6nmz_JgQwGxCKGNU0gs0wpzLXAlBLtEIABe5Ylxco5sYdwAgBZMjVKyn5dy_ZKuu9Z3Lyt5U2dxH0zTBNWbwfZd9eZOtTRi8bV228O3ggu-aW3RVmza6u987RpvF62b2npert-VsWuaWYzzklUlzmARJeS1tehkoJgnduopKYcW2Ym5ruOA1swJLWatCEcoLbHmtqKVj9HSuPYT-8-jioPc-Wte2pnP9MWosBECBKeMJffyH7vpj6NK4RDGCCeFUJQrOlA19jMHV-hD83oRvjUGfTOpkUp9M6l-TKfJwjnjn3B8uigJLUPQHrCVruQ</recordid><startdate>20150201</startdate><enddate>20150201</enddate><creator>Egarter, Dominik</creator><creator>Bhuvana, Venkata Pathuri</creator><creator>Elmenreich, Wilfried</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7SC</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150201</creationdate><title>PALDi: Online Load Disaggregation via Particle Filtering</title><author>Egarter, Dominik ; Bhuvana, Venkata Pathuri ; Elmenreich, Wilfried</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-da344470735f7c4444094723bed376c6bd4eba565f4c6177f98923581c5f93c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Appliances</topic><topic>Approximation methods</topic><topic>Computational modeling</topic><topic>Energy management</topic><topic>Factorial hidden Markov model (FHMM)</topic><topic>Filtering</topic><topic>Filtration</topic><topic>hidden Markov model (HMM)</topic><topic>Hidden Markov models</topic><topic>Home appliances</topic><topic>Households</topic><topic>Instrumentation</topic><topic>load disaggregation</topic><topic>Load modeling</topic><topic>Markov analysis</topic><topic>Mathematical models</topic><topic>Measurement</topic><topic>Measuring instruments</topic><topic>Meters</topic><topic>non-intrusive load monitoring (NILM)</topic><topic>particle filter (PF)</topic><topic>Power demand</topic><topic>state estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Egarter, Dominik</creatorcontrib><creatorcontrib>Bhuvana, Venkata Pathuri</creatorcontrib><creatorcontrib>Elmenreich, Wilfried</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Egarter, Dominik</au><au>Bhuvana, Venkata Pathuri</au><au>Elmenreich, Wilfried</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PALDi: Online Load Disaggregation via Particle Filtering</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2015-02-01</date><risdate>2015</risdate><volume>64</volume><issue>2</issue><spage>467</spage><epage>477</epage><pages>467-477</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Smart metering and fine-grained energy data are one of the major enablers for future smart grid and improved energy efficiency in smart homes. Using the information provided by smart meter power draw, valuable information can be extracted as disaggregated appliance power draws by non-intrusive load monitoring (NILM). NILM allows to identify appliances according to their power characteristics in the total power consumption of a household, measured by one sensor, the smart meter. In this paper, we present an NILM approach, where the appliance states are estimated by particle filtering (PF). PF is used for nonlinear and non-Gaussian disturbed problems and is suitable to estimate the appliance state. ON/OFF appliances, multistate appliances, or combinations of them are modeled by hidden Markov models, and their combinations result in a factorial hidden Markov model modeling the household power demand. We evaluate the PF-based NILM approach on synthetic and on real data from a well-known dataset to show that our approach achieves an accuracy of 90% on real household power draws.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2014.2344373</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2015-02, Vol.64 (2), p.467-477
issn 0018-9456
1557-9662
language eng
recordid cdi_proquest_journals_1642122539
source IEEE Electronic Library (IEL) Journals
subjects Appliances
Approximation methods
Computational modeling
Energy management
Factorial hidden Markov model (FHMM)
Filtering
Filtration
hidden Markov model (HMM)
Hidden Markov models
Home appliances
Households
Instrumentation
load disaggregation
Load modeling
Markov analysis
Mathematical models
Measurement
Measuring instruments
Meters
non-intrusive load monitoring (NILM)
particle filter (PF)
Power demand
state estimation
title PALDi: Online Load Disaggregation via Particle Filtering
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T01%3A28%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PALDi:%20Online%20Load%20Disaggregation%20via%20Particle%20Filtering&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Egarter,%20Dominik&rft.date=2015-02-01&rft.volume=64&rft.issue=2&rft.spage=467&rft.epage=477&rft.pages=467-477&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2014.2344373&rft_dat=%3Cproquest_cross%3E3545845341%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c511t-da344470735f7c4444094723bed376c6bd4eba565f4c6177f98923581c5f93c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1642122539&rft_id=info:pmid/&rft_ieee_id=6881709&rfr_iscdi=true