Loading…

Mathematical Analysis of the Reduction of Wüstite at Different Basicity Using Factorial Design

Numerical prediction is performed on the reduction of wüstite under simulated blast furnace conditions using factorial design approach. Wüstite sinter samples with different basicity (0.5, 1.0, and 2.0) are reduced with a gas mixture consisting of 30% CO, 10% H2, 5% CO2, and 55% N2 at 950–1100°C. In...

Full description

Saved in:
Bibliographic Details
Published in:Journal of metallurgy 2014-01, Vol.2014, p.1-8
Main Author: Mousa, E. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Numerical prediction is performed on the reduction of wüstite under simulated blast furnace conditions using factorial design approach. Wüstite sinter samples with different basicity (0.5, 1.0, and 2.0) are reduced with a gas mixture consisting of 30% CO, 10% H2, 5% CO2, and 55% N2 at 950–1100°C. In all cases, the reduction degree of wüstite increased with basicity and temperature. A 23 factorial design is applied to derive a regression model based on the experimental data of acidic (CaO/SiO2 = 0.5) and basic (CaO/SiO2 = 2.0) wüstite which is reduced at 950°C and 1100°C for 5 and 35 min. The developed mathematical model is applied to predict the reduction degree of wüstite at different basicity (0.5, 1.0, and 2.0), interval of time (5–35 min), and temperatures (950, 1000, 1050°C, and 1100°C). In general, the results of the driven models are found to be in good agreement with the experimental data of reduction of wüstite in many cases. The MATLAB program is used to carry out the required calculations.
ISSN:1687-9465
1687-9473
DOI:10.1155/2014/201659