Loading…

Comparing the pitting corrosion behavior of prominent Zr-based bulk metallic glasses

Five well-known Zr-based alloys of the systems Zr–Cu–Al–(Ni–Nb, Ni–Ti, Ag) (Cu = 15.4–36 at.%) with the highest glass-forming ability were comparatively analyzed regarding their pitting corrosion resistance and repassivation ability in a chloride-containing solution. Potentiodynamic polarization mea...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials research 2015-01, Vol.30 (2), p.233-241
Main Authors: Gostin, Petre Flaviu, Eigel, Dimitri, Grell, Daniel, Eckert, Jürgen, Kerscher, Eberhard, Gebert, Annett
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c551t-8c909d2ffa6924816cf2f44339075700542274c402f462be4d2705d3a138f3fd3
cites cdi_FETCH-LOGICAL-c551t-8c909d2ffa6924816cf2f44339075700542274c402f462be4d2705d3a138f3fd3
container_end_page 241
container_issue 2
container_start_page 233
container_title Journal of materials research
container_volume 30
creator Gostin, Petre Flaviu
Eigel, Dimitri
Grell, Daniel
Eckert, Jürgen
Kerscher, Eberhard
Gebert, Annett
description Five well-known Zr-based alloys of the systems Zr–Cu–Al–(Ni–Nb, Ni–Ti, Ag) (Cu = 15.4–36 at.%) with the highest glass-forming ability were comparatively analyzed regarding their pitting corrosion resistance and repassivation ability in a chloride-containing solution. Potentiodynamic polarization measurements were conducted in the neutral 0.01 M Na2SO4 + 0.1 M NaCl electrolyte and local corrosion damages were subsequently investigated with high resolution scanning electron microscopy (HR-SEM) coupled with energy dispersive x-ray spectroscopy (EDX). Both pitting and repassivation potential correlate with the Cu concentration, i.e., those potentials decrease with increasing Cu content. Pit morphology is not composition dependent: while initially hemispherical pits then develop an irregular shape and a porous rim. Corrosion products are rich in Cu, O, and often Cl species. A combination of low Cu and high Nb or Ti contents is most beneficial for a high pitting resistance of Zr-based bulk metallic glasses. The bulk glassy Zr57Cu15.4Al10Ni12.6Nb5 (Vit 106) and Zr52.5Cu17.9Al10Ni14.6Ti5 (Vit 105) alloys exhibit the highest pitting resistance.
doi_str_mv 10.1557/jmr.2014.371
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1648524124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_jmr_2014_371</cupid><sourcerecordid>3570815311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c551t-8c909d2ffa6924816cf2f44339075700542274c402f462be4d2705d3a138f3fd3</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7e_AEBr7bmY9KPoyx-wYKX9eIlpG2ym7VtatIV_PemdA8eBE8ZwjPvzDwIXVOSUiHyu33nU0YopDynJ2jBCEAiOMtO0YIUBSSspHCOLkLYE0IFyWGBNivXDcrbfovHncaDHceprp33LljX40rv1Jd1HjuDB-862-t-xO8-qVTQDa4O7Qfu9Kja1tZ426oQdLhEZ0a1QV8d3yV6e3zYrJ6T9evTy-p-ndRC0DEp6pKUDTNGZSWDgma1YQaA85LkIidEAGM51EDib8YqDQ3LiWi4orww3DR8iW7m3LjY50GHUe7dwfdxpKQZFIIBZRCp25mq40nBayMHbzvlvyUlcvImozc5eZPRW8STGQ_DpEX7X6F_8-kxXnWVt81W_9PwA2pZfjc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1648524124</pqid></control><display><type>article</type><title>Comparing the pitting corrosion behavior of prominent Zr-based bulk metallic glasses</title><source>ABI/INFORM Collection</source><source>Springer Nature</source><creator>Gostin, Petre Flaviu ; Eigel, Dimitri ; Grell, Daniel ; Eckert, Jürgen ; Kerscher, Eberhard ; Gebert, Annett</creator><creatorcontrib>Gostin, Petre Flaviu ; Eigel, Dimitri ; Grell, Daniel ; Eckert, Jürgen ; Kerscher, Eberhard ; Gebert, Annett</creatorcontrib><description>Five well-known Zr-based alloys of the systems Zr–Cu–Al–(Ni–Nb, Ni–Ti, Ag) (Cu = 15.4–36 at.%) with the highest glass-forming ability were comparatively analyzed regarding their pitting corrosion resistance and repassivation ability in a chloride-containing solution. Potentiodynamic polarization measurements were conducted in the neutral 0.01 M Na2SO4 + 0.1 M NaCl electrolyte and local corrosion damages were subsequently investigated with high resolution scanning electron microscopy (HR-SEM) coupled with energy dispersive x-ray spectroscopy (EDX). Both pitting and repassivation potential correlate with the Cu concentration, i.e., those potentials decrease with increasing Cu content. Pit morphology is not composition dependent: while initially hemispherical pits then develop an irregular shape and a porous rim. Corrosion products are rich in Cu, O, and often Cl species. A combination of low Cu and high Nb or Ti contents is most beneficial for a high pitting resistance of Zr-based bulk metallic glasses. The bulk glassy Zr57Cu15.4Al10Ni12.6Nb5 (Vit 106) and Zr52.5Cu17.9Al10Ni14.6Ti5 (Vit 105) alloys exhibit the highest pitting resistance.</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/jmr.2014.371</identifier><identifier>CODEN: JMREEE</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Alloys ; Analysis ; Applied and Technical Physics ; Biomaterials ; Corrosion ; Corrosion resistance ; Crack initiation ; Electrodes ; Electrolytes ; Glass ; Inorganic Chemistry ; Materials Engineering ; Materials research ; Materials Science ; Metal fatigue ; Nanotechnology ; Studies</subject><ispartof>Journal of materials research, 2015-01, Vol.30 (2), p.233-241</ispartof><rights>Copyright © Materials Research Society 2015</rights><rights>The Materials Research Society 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c551t-8c909d2ffa6924816cf2f44339075700542274c402f462be4d2705d3a138f3fd3</citedby><cites>FETCH-LOGICAL-c551t-8c909d2ffa6924816cf2f44339075700542274c402f462be4d2705d3a138f3fd3</cites><orcidid>0000-0002-0528-7093</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1648524124/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1648524124?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363,74895</link.rule.ids></links><search><creatorcontrib>Gostin, Petre Flaviu</creatorcontrib><creatorcontrib>Eigel, Dimitri</creatorcontrib><creatorcontrib>Grell, Daniel</creatorcontrib><creatorcontrib>Eckert, Jürgen</creatorcontrib><creatorcontrib>Kerscher, Eberhard</creatorcontrib><creatorcontrib>Gebert, Annett</creatorcontrib><title>Comparing the pitting corrosion behavior of prominent Zr-based bulk metallic glasses</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><addtitle>J. Mater. Res</addtitle><description>Five well-known Zr-based alloys of the systems Zr–Cu–Al–(Ni–Nb, Ni–Ti, Ag) (Cu = 15.4–36 at.%) with the highest glass-forming ability were comparatively analyzed regarding their pitting corrosion resistance and repassivation ability in a chloride-containing solution. Potentiodynamic polarization measurements were conducted in the neutral 0.01 M Na2SO4 + 0.1 M NaCl electrolyte and local corrosion damages were subsequently investigated with high resolution scanning electron microscopy (HR-SEM) coupled with energy dispersive x-ray spectroscopy (EDX). Both pitting and repassivation potential correlate with the Cu concentration, i.e., those potentials decrease with increasing Cu content. Pit morphology is not composition dependent: while initially hemispherical pits then develop an irregular shape and a porous rim. Corrosion products are rich in Cu, O, and often Cl species. A combination of low Cu and high Nb or Ti contents is most beneficial for a high pitting resistance of Zr-based bulk metallic glasses. The bulk glassy Zr57Cu15.4Al10Ni12.6Nb5 (Vit 106) and Zr52.5Cu17.9Al10Ni14.6Ti5 (Vit 105) alloys exhibit the highest pitting resistance.</description><subject>Alloys</subject><subject>Analysis</subject><subject>Applied and Technical Physics</subject><subject>Biomaterials</subject><subject>Corrosion</subject><subject>Corrosion resistance</subject><subject>Crack initiation</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Glass</subject><subject>Inorganic Chemistry</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Metal fatigue</subject><subject>Nanotechnology</subject><subject>Studies</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNqFkE1LxDAQhoMouK7e_AEBr7bmY9KPoyx-wYKX9eIlpG2ym7VtatIV_PemdA8eBE8ZwjPvzDwIXVOSUiHyu33nU0YopDynJ2jBCEAiOMtO0YIUBSSspHCOLkLYE0IFyWGBNivXDcrbfovHncaDHceprp33LljX40rv1Jd1HjuDB-862-t-xO8-qVTQDa4O7Qfu9Kja1tZ426oQdLhEZ0a1QV8d3yV6e3zYrJ6T9evTy-p-ndRC0DEp6pKUDTNGZSWDgma1YQaA85LkIidEAGM51EDib8YqDQ3LiWi4orww3DR8iW7m3LjY50GHUe7dwfdxpKQZFIIBZRCp25mq40nBayMHbzvlvyUlcvImozc5eZPRW8STGQ_DpEX7X6F_8-kxXnWVt81W_9PwA2pZfjc</recordid><startdate>20150128</startdate><enddate>20150128</enddate><creator>Gostin, Petre Flaviu</creator><creator>Eigel, Dimitri</creator><creator>Grell, Daniel</creator><creator>Eckert, Jürgen</creator><creator>Kerscher, Eberhard</creator><creator>Gebert, Annett</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SR</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-0528-7093</orcidid></search><sort><creationdate>20150128</creationdate><title>Comparing the pitting corrosion behavior of prominent Zr-based bulk metallic glasses</title><author>Gostin, Petre Flaviu ; Eigel, Dimitri ; Grell, Daniel ; Eckert, Jürgen ; Kerscher, Eberhard ; Gebert, Annett</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c551t-8c909d2ffa6924816cf2f44339075700542274c402f462be4d2705d3a138f3fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Alloys</topic><topic>Analysis</topic><topic>Applied and Technical Physics</topic><topic>Biomaterials</topic><topic>Corrosion</topic><topic>Corrosion resistance</topic><topic>Crack initiation</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Glass</topic><topic>Inorganic Chemistry</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Metal fatigue</topic><topic>Nanotechnology</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gostin, Petre Flaviu</creatorcontrib><creatorcontrib>Eigel, Dimitri</creatorcontrib><creatorcontrib>Grell, Daniel</creatorcontrib><creatorcontrib>Eckert, Jürgen</creatorcontrib><creatorcontrib>Kerscher, Eberhard</creatorcontrib><creatorcontrib>Gebert, Annett</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Collection</collection><collection>Materials science collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gostin, Petre Flaviu</au><au>Eigel, Dimitri</au><au>Grell, Daniel</au><au>Eckert, Jürgen</au><au>Kerscher, Eberhard</au><au>Gebert, Annett</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparing the pitting corrosion behavior of prominent Zr-based bulk metallic glasses</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><addtitle>J. Mater. Res</addtitle><date>2015-01-28</date><risdate>2015</risdate><volume>30</volume><issue>2</issue><spage>233</spage><epage>241</epage><pages>233-241</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><coden>JMREEE</coden><abstract>Five well-known Zr-based alloys of the systems Zr–Cu–Al–(Ni–Nb, Ni–Ti, Ag) (Cu = 15.4–36 at.%) with the highest glass-forming ability were comparatively analyzed regarding their pitting corrosion resistance and repassivation ability in a chloride-containing solution. Potentiodynamic polarization measurements were conducted in the neutral 0.01 M Na2SO4 + 0.1 M NaCl electrolyte and local corrosion damages were subsequently investigated with high resolution scanning electron microscopy (HR-SEM) coupled with energy dispersive x-ray spectroscopy (EDX). Both pitting and repassivation potential correlate with the Cu concentration, i.e., those potentials decrease with increasing Cu content. Pit morphology is not composition dependent: while initially hemispherical pits then develop an irregular shape and a porous rim. Corrosion products are rich in Cu, O, and often Cl species. A combination of low Cu and high Nb or Ti contents is most beneficial for a high pitting resistance of Zr-based bulk metallic glasses. The bulk glassy Zr57Cu15.4Al10Ni12.6Nb5 (Vit 106) and Zr52.5Cu17.9Al10Ni14.6Ti5 (Vit 105) alloys exhibit the highest pitting resistance.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/jmr.2014.371</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0528-7093</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0884-2914
ispartof Journal of materials research, 2015-01, Vol.30 (2), p.233-241
issn 0884-2914
2044-5326
language eng
recordid cdi_proquest_journals_1648524124
source ABI/INFORM Collection; Springer Nature
subjects Alloys
Analysis
Applied and Technical Physics
Biomaterials
Corrosion
Corrosion resistance
Crack initiation
Electrodes
Electrolytes
Glass
Inorganic Chemistry
Materials Engineering
Materials research
Materials Science
Metal fatigue
Nanotechnology
Studies
title Comparing the pitting corrosion behavior of prominent Zr-based bulk metallic glasses
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A48%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparing%20the%20pitting%20corrosion%20behavior%20of%20prominent%20Zr-based%20bulk%20metallic%20glasses&rft.jtitle=Journal%20of%20materials%20research&rft.au=Gostin,%20Petre%20Flaviu&rft.date=2015-01-28&rft.volume=30&rft.issue=2&rft.spage=233&rft.epage=241&rft.pages=233-241&rft.issn=0884-2914&rft.eissn=2044-5326&rft.coden=JMREEE&rft_id=info:doi/10.1557/jmr.2014.371&rft_dat=%3Cproquest_cross%3E3570815311%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c551t-8c909d2ffa6924816cf2f44339075700542274c402f462be4d2705d3a138f3fd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1648524124&rft_id=info:pmid/&rft_cupid=10_1557_jmr_2014_371&rfr_iscdi=true