Loading…
Comparing the pitting corrosion behavior of prominent Zr-based bulk metallic glasses
Five well-known Zr-based alloys of the systems Zr–Cu–Al–(Ni–Nb, Ni–Ti, Ag) (Cu = 15.4–36 at.%) with the highest glass-forming ability were comparatively analyzed regarding their pitting corrosion resistance and repassivation ability in a chloride-containing solution. Potentiodynamic polarization mea...
Saved in:
Published in: | Journal of materials research 2015-01, Vol.30 (2), p.233-241 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c551t-8c909d2ffa6924816cf2f44339075700542274c402f462be4d2705d3a138f3fd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c551t-8c909d2ffa6924816cf2f44339075700542274c402f462be4d2705d3a138f3fd3 |
container_end_page | 241 |
container_issue | 2 |
container_start_page | 233 |
container_title | Journal of materials research |
container_volume | 30 |
creator | Gostin, Petre Flaviu Eigel, Dimitri Grell, Daniel Eckert, Jürgen Kerscher, Eberhard Gebert, Annett |
description | Five well-known Zr-based alloys of the systems Zr–Cu–Al–(Ni–Nb, Ni–Ti, Ag) (Cu = 15.4–36 at.%) with the highest glass-forming ability were comparatively analyzed regarding their pitting corrosion resistance and repassivation ability in a chloride-containing solution. Potentiodynamic polarization measurements were conducted in the neutral 0.01 M Na2SO4 + 0.1 M NaCl electrolyte and local corrosion damages were subsequently investigated with high resolution scanning electron microscopy (HR-SEM) coupled with energy dispersive x-ray spectroscopy (EDX). Both pitting and repassivation potential correlate with the Cu concentration, i.e., those potentials decrease with increasing Cu content. Pit morphology is not composition dependent: while initially hemispherical pits then develop an irregular shape and a porous rim. Corrosion products are rich in Cu, O, and often Cl species. A combination of low Cu and high Nb or Ti contents is most beneficial for a high pitting resistance of Zr-based bulk metallic glasses. The bulk glassy Zr57Cu15.4Al10Ni12.6Nb5 (Vit 106) and Zr52.5Cu17.9Al10Ni14.6Ti5 (Vit 105) alloys exhibit the highest pitting resistance. |
doi_str_mv | 10.1557/jmr.2014.371 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1648524124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_jmr_2014_371</cupid><sourcerecordid>3570815311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c551t-8c909d2ffa6924816cf2f44339075700542274c402f462be4d2705d3a138f3fd3</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7e_AEBr7bmY9KPoyx-wYKX9eIlpG2ym7VtatIV_PemdA8eBE8ZwjPvzDwIXVOSUiHyu33nU0YopDynJ2jBCEAiOMtO0YIUBSSspHCOLkLYE0IFyWGBNivXDcrbfovHncaDHceprp33LljX40rv1Jd1HjuDB-862-t-xO8-qVTQDa4O7Qfu9Kja1tZ426oQdLhEZ0a1QV8d3yV6e3zYrJ6T9evTy-p-ndRC0DEp6pKUDTNGZSWDgma1YQaA85LkIidEAGM51EDib8YqDQ3LiWi4orww3DR8iW7m3LjY50GHUe7dwfdxpKQZFIIBZRCp25mq40nBayMHbzvlvyUlcvImozc5eZPRW8STGQ_DpEX7X6F_8-kxXnWVt81W_9PwA2pZfjc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1648524124</pqid></control><display><type>article</type><title>Comparing the pitting corrosion behavior of prominent Zr-based bulk metallic glasses</title><source>ABI/INFORM Collection</source><source>Springer Nature</source><creator>Gostin, Petre Flaviu ; Eigel, Dimitri ; Grell, Daniel ; Eckert, Jürgen ; Kerscher, Eberhard ; Gebert, Annett</creator><creatorcontrib>Gostin, Petre Flaviu ; Eigel, Dimitri ; Grell, Daniel ; Eckert, Jürgen ; Kerscher, Eberhard ; Gebert, Annett</creatorcontrib><description>Five well-known Zr-based alloys of the systems Zr–Cu–Al–(Ni–Nb, Ni–Ti, Ag) (Cu = 15.4–36 at.%) with the highest glass-forming ability were comparatively analyzed regarding their pitting corrosion resistance and repassivation ability in a chloride-containing solution. Potentiodynamic polarization measurements were conducted in the neutral 0.01 M Na2SO4 + 0.1 M NaCl electrolyte and local corrosion damages were subsequently investigated with high resolution scanning electron microscopy (HR-SEM) coupled with energy dispersive x-ray spectroscopy (EDX). Both pitting and repassivation potential correlate with the Cu concentration, i.e., those potentials decrease with increasing Cu content. Pit morphology is not composition dependent: while initially hemispherical pits then develop an irregular shape and a porous rim. Corrosion products are rich in Cu, O, and often Cl species. A combination of low Cu and high Nb or Ti contents is most beneficial for a high pitting resistance of Zr-based bulk metallic glasses. The bulk glassy Zr57Cu15.4Al10Ni12.6Nb5 (Vit 106) and Zr52.5Cu17.9Al10Ni14.6Ti5 (Vit 105) alloys exhibit the highest pitting resistance.</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/jmr.2014.371</identifier><identifier>CODEN: JMREEE</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Alloys ; Analysis ; Applied and Technical Physics ; Biomaterials ; Corrosion ; Corrosion resistance ; Crack initiation ; Electrodes ; Electrolytes ; Glass ; Inorganic Chemistry ; Materials Engineering ; Materials research ; Materials Science ; Metal fatigue ; Nanotechnology ; Studies</subject><ispartof>Journal of materials research, 2015-01, Vol.30 (2), p.233-241</ispartof><rights>Copyright © Materials Research Society 2015</rights><rights>The Materials Research Society 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c551t-8c909d2ffa6924816cf2f44339075700542274c402f462be4d2705d3a138f3fd3</citedby><cites>FETCH-LOGICAL-c551t-8c909d2ffa6924816cf2f44339075700542274c402f462be4d2705d3a138f3fd3</cites><orcidid>0000-0002-0528-7093</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1648524124/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1648524124?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363,74895</link.rule.ids></links><search><creatorcontrib>Gostin, Petre Flaviu</creatorcontrib><creatorcontrib>Eigel, Dimitri</creatorcontrib><creatorcontrib>Grell, Daniel</creatorcontrib><creatorcontrib>Eckert, Jürgen</creatorcontrib><creatorcontrib>Kerscher, Eberhard</creatorcontrib><creatorcontrib>Gebert, Annett</creatorcontrib><title>Comparing the pitting corrosion behavior of prominent Zr-based bulk metallic glasses</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><addtitle>J. Mater. Res</addtitle><description>Five well-known Zr-based alloys of the systems Zr–Cu–Al–(Ni–Nb, Ni–Ti, Ag) (Cu = 15.4–36 at.%) with the highest glass-forming ability were comparatively analyzed regarding their pitting corrosion resistance and repassivation ability in a chloride-containing solution. Potentiodynamic polarization measurements were conducted in the neutral 0.01 M Na2SO4 + 0.1 M NaCl electrolyte and local corrosion damages were subsequently investigated with high resolution scanning electron microscopy (HR-SEM) coupled with energy dispersive x-ray spectroscopy (EDX). Both pitting and repassivation potential correlate with the Cu concentration, i.e., those potentials decrease with increasing Cu content. Pit morphology is not composition dependent: while initially hemispherical pits then develop an irregular shape and a porous rim. Corrosion products are rich in Cu, O, and often Cl species. A combination of low Cu and high Nb or Ti contents is most beneficial for a high pitting resistance of Zr-based bulk metallic glasses. The bulk glassy Zr57Cu15.4Al10Ni12.6Nb5 (Vit 106) and Zr52.5Cu17.9Al10Ni14.6Ti5 (Vit 105) alloys exhibit the highest pitting resistance.</description><subject>Alloys</subject><subject>Analysis</subject><subject>Applied and Technical Physics</subject><subject>Biomaterials</subject><subject>Corrosion</subject><subject>Corrosion resistance</subject><subject>Crack initiation</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Glass</subject><subject>Inorganic Chemistry</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Metal fatigue</subject><subject>Nanotechnology</subject><subject>Studies</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNqFkE1LxDAQhoMouK7e_AEBr7bmY9KPoyx-wYKX9eIlpG2ym7VtatIV_PemdA8eBE8ZwjPvzDwIXVOSUiHyu33nU0YopDynJ2jBCEAiOMtO0YIUBSSspHCOLkLYE0IFyWGBNivXDcrbfovHncaDHceprp33LljX40rv1Jd1HjuDB-862-t-xO8-qVTQDa4O7Qfu9Kja1tZ426oQdLhEZ0a1QV8d3yV6e3zYrJ6T9evTy-p-ndRC0DEp6pKUDTNGZSWDgma1YQaA85LkIidEAGM51EDib8YqDQ3LiWi4orww3DR8iW7m3LjY50GHUe7dwfdxpKQZFIIBZRCp25mq40nBayMHbzvlvyUlcvImozc5eZPRW8STGQ_DpEX7X6F_8-kxXnWVt81W_9PwA2pZfjc</recordid><startdate>20150128</startdate><enddate>20150128</enddate><creator>Gostin, Petre Flaviu</creator><creator>Eigel, Dimitri</creator><creator>Grell, Daniel</creator><creator>Eckert, Jürgen</creator><creator>Kerscher, Eberhard</creator><creator>Gebert, Annett</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SR</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-0528-7093</orcidid></search><sort><creationdate>20150128</creationdate><title>Comparing the pitting corrosion behavior of prominent Zr-based bulk metallic glasses</title><author>Gostin, Petre Flaviu ; Eigel, Dimitri ; Grell, Daniel ; Eckert, Jürgen ; Kerscher, Eberhard ; Gebert, Annett</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c551t-8c909d2ffa6924816cf2f44339075700542274c402f462be4d2705d3a138f3fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Alloys</topic><topic>Analysis</topic><topic>Applied and Technical Physics</topic><topic>Biomaterials</topic><topic>Corrosion</topic><topic>Corrosion resistance</topic><topic>Crack initiation</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Glass</topic><topic>Inorganic Chemistry</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Metal fatigue</topic><topic>Nanotechnology</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gostin, Petre Flaviu</creatorcontrib><creatorcontrib>Eigel, Dimitri</creatorcontrib><creatorcontrib>Grell, Daniel</creatorcontrib><creatorcontrib>Eckert, Jürgen</creatorcontrib><creatorcontrib>Kerscher, Eberhard</creatorcontrib><creatorcontrib>Gebert, Annett</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Collection</collection><collection>Materials science collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gostin, Petre Flaviu</au><au>Eigel, Dimitri</au><au>Grell, Daniel</au><au>Eckert, Jürgen</au><au>Kerscher, Eberhard</au><au>Gebert, Annett</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparing the pitting corrosion behavior of prominent Zr-based bulk metallic glasses</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><addtitle>J. Mater. Res</addtitle><date>2015-01-28</date><risdate>2015</risdate><volume>30</volume><issue>2</issue><spage>233</spage><epage>241</epage><pages>233-241</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><coden>JMREEE</coden><abstract>Five well-known Zr-based alloys of the systems Zr–Cu–Al–(Ni–Nb, Ni–Ti, Ag) (Cu = 15.4–36 at.%) with the highest glass-forming ability were comparatively analyzed regarding their pitting corrosion resistance and repassivation ability in a chloride-containing solution. Potentiodynamic polarization measurements were conducted in the neutral 0.01 M Na2SO4 + 0.1 M NaCl electrolyte and local corrosion damages were subsequently investigated with high resolution scanning electron microscopy (HR-SEM) coupled with energy dispersive x-ray spectroscopy (EDX). Both pitting and repassivation potential correlate with the Cu concentration, i.e., those potentials decrease with increasing Cu content. Pit morphology is not composition dependent: while initially hemispherical pits then develop an irregular shape and a porous rim. Corrosion products are rich in Cu, O, and often Cl species. A combination of low Cu and high Nb or Ti contents is most beneficial for a high pitting resistance of Zr-based bulk metallic glasses. The bulk glassy Zr57Cu15.4Al10Ni12.6Nb5 (Vit 106) and Zr52.5Cu17.9Al10Ni14.6Ti5 (Vit 105) alloys exhibit the highest pitting resistance.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/jmr.2014.371</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0528-7093</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0884-2914 |
ispartof | Journal of materials research, 2015-01, Vol.30 (2), p.233-241 |
issn | 0884-2914 2044-5326 |
language | eng |
recordid | cdi_proquest_journals_1648524124 |
source | ABI/INFORM Collection; Springer Nature |
subjects | Alloys Analysis Applied and Technical Physics Biomaterials Corrosion Corrosion resistance Crack initiation Electrodes Electrolytes Glass Inorganic Chemistry Materials Engineering Materials research Materials Science Metal fatigue Nanotechnology Studies |
title | Comparing the pitting corrosion behavior of prominent Zr-based bulk metallic glasses |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A48%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparing%20the%20pitting%20corrosion%20behavior%20of%20prominent%20Zr-based%20bulk%20metallic%20glasses&rft.jtitle=Journal%20of%20materials%20research&rft.au=Gostin,%20Petre%20Flaviu&rft.date=2015-01-28&rft.volume=30&rft.issue=2&rft.spage=233&rft.epage=241&rft.pages=233-241&rft.issn=0884-2914&rft.eissn=2044-5326&rft.coden=JMREEE&rft_id=info:doi/10.1557/jmr.2014.371&rft_dat=%3Cproquest_cross%3E3570815311%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c551t-8c909d2ffa6924816cf2f44339075700542274c402f462be4d2705d3a138f3fd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1648524124&rft_id=info:pmid/&rft_cupid=10_1557_jmr_2014_371&rfr_iscdi=true |