Loading…
How Many Parameters Can Be Maximally Estimated From a Set of Measurements?
Remote sensing algorithms often invert multiple measurements simultaneously to retrieve a group of geophysical parameters. In order to create a robust retrieval algorithm, it is necessary to ensure that there are more unique measurements than parameters to be retrieved. If this is not the case, the...
Saved in:
Published in: | IEEE geoscience and remote sensing letters 2015-05, Vol.12 (5), p.1081-1085 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c448t-329dcd0afae8958c6bb200d78031f1759dbfc7ffa78db81af93c15c88a8113c33 |
---|---|
cites | cdi_FETCH-LOGICAL-c448t-329dcd0afae8958c6bb200d78031f1759dbfc7ffa78db81af93c15c88a8113c33 |
container_end_page | 1085 |
container_issue | 5 |
container_start_page | 1081 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 12 |
creator | Konings, Alexandra G. McColl, Kaighin A. Piles, María Entekhabi, Dara |
description | Remote sensing algorithms often invert multiple measurements simultaneously to retrieve a group of geophysical parameters. In order to create a robust retrieval algorithm, it is necessary to ensure that there are more unique measurements than parameters to be retrieved. If this is not the case, the inversion might have multiple solutions and be sensitive to noise. In this letter, we introduce a methodology to calculate the number of (possibly fractional) "degrees of information" in a set of measurements, representing the number of parameters that can be retrieved robustly from that set. Since different measurements may not be mutually independent, the amount of duplicate information is calculated using the information-theoretic concept of total correlation (a generalization of mutual information). The total correlation is sensitive to the full distribution of each measurement and therefore accounts for duplicate information even if multiple measurements are related only partially and nonlinearly. The method is illustrated using several examples, and applications to a variety of sensor types are discussed. |
doi_str_mv | 10.1109/LGRS.2014.2381641 |
format | article |
fullrecord | <record><control><sourceid>proquest_csuc_</sourceid><recordid>TN_cdi_proquest_journals_1654866775</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7004836</ieee_id><sourcerecordid>3589028311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-329dcd0afae8958c6bb200d78031f1759dbfc7ffa78db81af93c15c88a8113c33</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhhdRsFZ_gHgJeN6a2SSb2ZNo6YfSolgFbyHNTqCl7WqyRfvv3aVFPQzzwbwvM0-SXALvAfDiZjJ6mfUyDrKXCYRcwlHSAaUw5UrDcVtLlaoC30-TsxiXnGcSUXeSx3H1xaZ2s2PPNtg11RQi69sNu6dm_L1Y29VqxwaxbqqaSjYM1ZpZNqOaVZ5NycZtoDVt6nh7npx4u4p0ccjd5G04eO2P08nT6KF_N0mdlFinIitKV3LrLWGh0OXzecZ5qZEL8KBVUc69095bjeUcwfpCOFAO0SKAcEJ0E9j7urh1JpCj4GxtKrv4a9rIuM6MkDlmstFc7zUfofrcUqzNstqGTXOmgVxJzHOt1T_nUMUYyJuP0Pwddga4aTGbFrNpMZsD5kZztdcsiOh3X3MuUeTiB_fHd8c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1654866775</pqid></control><display><type>article</type><title>How Many Parameters Can Be Maximally Estimated From a Set of Measurements?</title><source>IEEE Xplore (Online service)</source><creator>Konings, Alexandra G. ; McColl, Kaighin A. ; Piles, María ; Entekhabi, Dara</creator><creatorcontrib>Konings, Alexandra G. ; McColl, Kaighin A. ; Piles, María ; Entekhabi, Dara</creatorcontrib><description>Remote sensing algorithms often invert multiple measurements simultaneously to retrieve a group of geophysical parameters. In order to create a robust retrieval algorithm, it is necessary to ensure that there are more unique measurements than parameters to be retrieved. If this is not the case, the inversion might have multiple solutions and be sensitive to noise. In this letter, we introduce a methodology to calculate the number of (possibly fractional) "degrees of information" in a set of measurements, representing the number of parameters that can be retrieved robustly from that set. Since different measurements may not be mutually independent, the amount of duplicate information is calculated using the information-theoretic concept of total correlation (a generalization of mutual information). The total correlation is sensitive to the full distribution of each measurement and therefore accounts for duplicate information even if multiple measurements are related only partially and nonlinearly. The method is illustrated using several examples, and applications to a variety of sensor types are discussed.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2014.2381641</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorismes ; Algorithm design ; Algorithms ; Classification ; Correlation ; Enginyeria de la telecomunicació ; Intrinsic dimensionality estimation ; Joints ; Mutual information ; Radar ; Radiocomunicació i exploració electromagnètica ; Remote sensing ; Retrieval ; Retrieval algorithms ; Sea measurements ; Space ; Teledetecció ; Total correlation ; Àrees temàtiques de la UPC</subject><ispartof>IEEE geoscience and remote sensing letters, 2015-05, Vol.12 (5), p.1081-1085</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-329dcd0afae8958c6bb200d78031f1759dbfc7ffa78db81af93c15c88a8113c33</citedby><cites>FETCH-LOGICAL-c448t-329dcd0afae8958c6bb200d78031f1759dbfc7ffa78db81af93c15c88a8113c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7004836$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Konings, Alexandra G.</creatorcontrib><creatorcontrib>McColl, Kaighin A.</creatorcontrib><creatorcontrib>Piles, María</creatorcontrib><creatorcontrib>Entekhabi, Dara</creatorcontrib><title>How Many Parameters Can Be Maximally Estimated From a Set of Measurements?</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Remote sensing algorithms often invert multiple measurements simultaneously to retrieve a group of geophysical parameters. In order to create a robust retrieval algorithm, it is necessary to ensure that there are more unique measurements than parameters to be retrieved. If this is not the case, the inversion might have multiple solutions and be sensitive to noise. In this letter, we introduce a methodology to calculate the number of (possibly fractional) "degrees of information" in a set of measurements, representing the number of parameters that can be retrieved robustly from that set. Since different measurements may not be mutually independent, the amount of duplicate information is calculated using the information-theoretic concept of total correlation (a generalization of mutual information). The total correlation is sensitive to the full distribution of each measurement and therefore accounts for duplicate information even if multiple measurements are related only partially and nonlinearly. The method is illustrated using several examples, and applications to a variety of sensor types are discussed.</description><subject>Algorismes</subject><subject>Algorithm design</subject><subject>Algorithms</subject><subject>Classification</subject><subject>Correlation</subject><subject>Enginyeria de la telecomunicació</subject><subject>Intrinsic dimensionality estimation</subject><subject>Joints</subject><subject>Mutual information</subject><subject>Radar</subject><subject>Radiocomunicació i exploració electromagnètica</subject><subject>Remote sensing</subject><subject>Retrieval</subject><subject>Retrieval algorithms</subject><subject>Sea measurements</subject><subject>Space</subject><subject>Teledetecció</subject><subject>Total correlation</subject><subject>Àrees temàtiques de la UPC</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNpNkE1LAzEQhhdRsFZ_gHgJeN6a2SSb2ZNo6YfSolgFbyHNTqCl7WqyRfvv3aVFPQzzwbwvM0-SXALvAfDiZjJ6mfUyDrKXCYRcwlHSAaUw5UrDcVtLlaoC30-TsxiXnGcSUXeSx3H1xaZ2s2PPNtg11RQi69sNu6dm_L1Y29VqxwaxbqqaSjYM1ZpZNqOaVZ5NycZtoDVt6nh7npx4u4p0ccjd5G04eO2P08nT6KF_N0mdlFinIitKV3LrLWGh0OXzecZ5qZEL8KBVUc69095bjeUcwfpCOFAO0SKAcEJ0E9j7urh1JpCj4GxtKrv4a9rIuM6MkDlmstFc7zUfofrcUqzNstqGTXOmgVxJzHOt1T_nUMUYyJuP0Pwddga4aTGbFrNpMZsD5kZztdcsiOh3X3MuUeTiB_fHd8c</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Konings, Alexandra G.</creator><creator>McColl, Kaighin A.</creator><creator>Piles, María</creator><creator>Entekhabi, Dara</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>XX2</scope></search><sort><creationdate>20150501</creationdate><title>How Many Parameters Can Be Maximally Estimated From a Set of Measurements?</title><author>Konings, Alexandra G. ; McColl, Kaighin A. ; Piles, María ; Entekhabi, Dara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-329dcd0afae8958c6bb200d78031f1759dbfc7ffa78db81af93c15c88a8113c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorismes</topic><topic>Algorithm design</topic><topic>Algorithms</topic><topic>Classification</topic><topic>Correlation</topic><topic>Enginyeria de la telecomunicació</topic><topic>Intrinsic dimensionality estimation</topic><topic>Joints</topic><topic>Mutual information</topic><topic>Radar</topic><topic>Radiocomunicació i exploració electromagnètica</topic><topic>Remote sensing</topic><topic>Retrieval</topic><topic>Retrieval algorithms</topic><topic>Sea measurements</topic><topic>Space</topic><topic>Teledetecció</topic><topic>Total correlation</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Konings, Alexandra G.</creatorcontrib><creatorcontrib>McColl, Kaighin A.</creatorcontrib><creatorcontrib>Piles, María</creatorcontrib><creatorcontrib>Entekhabi, Dara</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Recercat</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Konings, Alexandra G.</au><au>McColl, Kaighin A.</au><au>Piles, María</au><au>Entekhabi, Dara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How Many Parameters Can Be Maximally Estimated From a Set of Measurements?</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2015-05-01</date><risdate>2015</risdate><volume>12</volume><issue>5</issue><spage>1081</spage><epage>1085</epage><pages>1081-1085</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Remote sensing algorithms often invert multiple measurements simultaneously to retrieve a group of geophysical parameters. In order to create a robust retrieval algorithm, it is necessary to ensure that there are more unique measurements than parameters to be retrieved. If this is not the case, the inversion might have multiple solutions and be sensitive to noise. In this letter, we introduce a methodology to calculate the number of (possibly fractional) "degrees of information" in a set of measurements, representing the number of parameters that can be retrieved robustly from that set. Since different measurements may not be mutually independent, the amount of duplicate information is calculated using the information-theoretic concept of total correlation (a generalization of mutual information). The total correlation is sensitive to the full distribution of each measurement and therefore accounts for duplicate information even if multiple measurements are related only partially and nonlinearly. The method is illustrated using several examples, and applications to a variety of sensor types are discussed.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2014.2381641</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2015-05, Vol.12 (5), p.1081-1085 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_proquest_journals_1654866775 |
source | IEEE Xplore (Online service) |
subjects | Algorismes Algorithm design Algorithms Classification Correlation Enginyeria de la telecomunicació Intrinsic dimensionality estimation Joints Mutual information Radar Radiocomunicació i exploració electromagnètica Remote sensing Retrieval Retrieval algorithms Sea measurements Space Teledetecció Total correlation Àrees temàtiques de la UPC |
title | How Many Parameters Can Be Maximally Estimated From a Set of Measurements? |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A05%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_csuc_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20Many%20Parameters%20Can%20Be%20Maximally%20Estimated%20From%20a%20Set%20of%20Measurements?&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Konings,%20Alexandra%20G.&rft.date=2015-05-01&rft.volume=12&rft.issue=5&rft.spage=1081&rft.epage=1085&rft.pages=1081-1085&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2014.2381641&rft_dat=%3Cproquest_csuc_%3E3589028311%3C/proquest_csuc_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c448t-329dcd0afae8958c6bb200d78031f1759dbfc7ffa78db81af93c15c88a8113c33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1654866775&rft_id=info:pmid/&rft_ieee_id=7004836&rfr_iscdi=true |