Loading…

How Many Parameters Can Be Maximally Estimated From a Set of Measurements?

Remote sensing algorithms often invert multiple measurements simultaneously to retrieve a group of geophysical parameters. In order to create a robust retrieval algorithm, it is necessary to ensure that there are more unique measurements than parameters to be retrieved. If this is not the case, the...

Full description

Saved in:
Bibliographic Details
Published in:IEEE geoscience and remote sensing letters 2015-05, Vol.12 (5), p.1081-1085
Main Authors: Konings, Alexandra G., McColl, Kaighin A., Piles, María, Entekhabi, Dara
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c448t-329dcd0afae8958c6bb200d78031f1759dbfc7ffa78db81af93c15c88a8113c33
cites cdi_FETCH-LOGICAL-c448t-329dcd0afae8958c6bb200d78031f1759dbfc7ffa78db81af93c15c88a8113c33
container_end_page 1085
container_issue 5
container_start_page 1081
container_title IEEE geoscience and remote sensing letters
container_volume 12
creator Konings, Alexandra G.
McColl, Kaighin A.
Piles, María
Entekhabi, Dara
description Remote sensing algorithms often invert multiple measurements simultaneously to retrieve a group of geophysical parameters. In order to create a robust retrieval algorithm, it is necessary to ensure that there are more unique measurements than parameters to be retrieved. If this is not the case, the inversion might have multiple solutions and be sensitive to noise. In this letter, we introduce a methodology to calculate the number of (possibly fractional) "degrees of information" in a set of measurements, representing the number of parameters that can be retrieved robustly from that set. Since different measurements may not be mutually independent, the amount of duplicate information is calculated using the information-theoretic concept of total correlation (a generalization of mutual information). The total correlation is sensitive to the full distribution of each measurement and therefore accounts for duplicate information even if multiple measurements are related only partially and nonlinearly. The method is illustrated using several examples, and applications to a variety of sensor types are discussed.
doi_str_mv 10.1109/LGRS.2014.2381641
format article
fullrecord <record><control><sourceid>proquest_csuc_</sourceid><recordid>TN_cdi_proquest_journals_1654866775</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7004836</ieee_id><sourcerecordid>3589028311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-329dcd0afae8958c6bb200d78031f1759dbfc7ffa78db81af93c15c88a8113c33</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhhdRsFZ_gHgJeN6a2SSb2ZNo6YfSolgFbyHNTqCl7WqyRfvv3aVFPQzzwbwvM0-SXALvAfDiZjJ6mfUyDrKXCYRcwlHSAaUw5UrDcVtLlaoC30-TsxiXnGcSUXeSx3H1xaZ2s2PPNtg11RQi69sNu6dm_L1Y29VqxwaxbqqaSjYM1ZpZNqOaVZ5NycZtoDVt6nh7npx4u4p0ccjd5G04eO2P08nT6KF_N0mdlFinIitKV3LrLWGh0OXzecZ5qZEL8KBVUc69095bjeUcwfpCOFAO0SKAcEJ0E9j7urh1JpCj4GxtKrv4a9rIuM6MkDlmstFc7zUfofrcUqzNstqGTXOmgVxJzHOt1T_nUMUYyJuP0Pwddga4aTGbFrNpMZsD5kZztdcsiOh3X3MuUeTiB_fHd8c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1654866775</pqid></control><display><type>article</type><title>How Many Parameters Can Be Maximally Estimated From a Set of Measurements?</title><source>IEEE Xplore (Online service)</source><creator>Konings, Alexandra G. ; McColl, Kaighin A. ; Piles, María ; Entekhabi, Dara</creator><creatorcontrib>Konings, Alexandra G. ; McColl, Kaighin A. ; Piles, María ; Entekhabi, Dara</creatorcontrib><description>Remote sensing algorithms often invert multiple measurements simultaneously to retrieve a group of geophysical parameters. In order to create a robust retrieval algorithm, it is necessary to ensure that there are more unique measurements than parameters to be retrieved. If this is not the case, the inversion might have multiple solutions and be sensitive to noise. In this letter, we introduce a methodology to calculate the number of (possibly fractional) "degrees of information" in a set of measurements, representing the number of parameters that can be retrieved robustly from that set. Since different measurements may not be mutually independent, the amount of duplicate information is calculated using the information-theoretic concept of total correlation (a generalization of mutual information). The total correlation is sensitive to the full distribution of each measurement and therefore accounts for duplicate information even if multiple measurements are related only partially and nonlinearly. The method is illustrated using several examples, and applications to a variety of sensor types are discussed.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2014.2381641</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorismes ; Algorithm design ; Algorithms ; Classification ; Correlation ; Enginyeria de la telecomunicació ; Intrinsic dimensionality estimation ; Joints ; Mutual information ; Radar ; Radiocomunicació i exploració electromagnètica ; Remote sensing ; Retrieval ; Retrieval algorithms ; Sea measurements ; Space ; Teledetecció ; Total correlation ; Àrees temàtiques de la UPC</subject><ispartof>IEEE geoscience and remote sensing letters, 2015-05, Vol.12 (5), p.1081-1085</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-329dcd0afae8958c6bb200d78031f1759dbfc7ffa78db81af93c15c88a8113c33</citedby><cites>FETCH-LOGICAL-c448t-329dcd0afae8958c6bb200d78031f1759dbfc7ffa78db81af93c15c88a8113c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7004836$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Konings, Alexandra G.</creatorcontrib><creatorcontrib>McColl, Kaighin A.</creatorcontrib><creatorcontrib>Piles, María</creatorcontrib><creatorcontrib>Entekhabi, Dara</creatorcontrib><title>How Many Parameters Can Be Maximally Estimated From a Set of Measurements?</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Remote sensing algorithms often invert multiple measurements simultaneously to retrieve a group of geophysical parameters. In order to create a robust retrieval algorithm, it is necessary to ensure that there are more unique measurements than parameters to be retrieved. If this is not the case, the inversion might have multiple solutions and be sensitive to noise. In this letter, we introduce a methodology to calculate the number of (possibly fractional) "degrees of information" in a set of measurements, representing the number of parameters that can be retrieved robustly from that set. Since different measurements may not be mutually independent, the amount of duplicate information is calculated using the information-theoretic concept of total correlation (a generalization of mutual information). The total correlation is sensitive to the full distribution of each measurement and therefore accounts for duplicate information even if multiple measurements are related only partially and nonlinearly. The method is illustrated using several examples, and applications to a variety of sensor types are discussed.</description><subject>Algorismes</subject><subject>Algorithm design</subject><subject>Algorithms</subject><subject>Classification</subject><subject>Correlation</subject><subject>Enginyeria de la telecomunicació</subject><subject>Intrinsic dimensionality estimation</subject><subject>Joints</subject><subject>Mutual information</subject><subject>Radar</subject><subject>Radiocomunicació i exploració electromagnètica</subject><subject>Remote sensing</subject><subject>Retrieval</subject><subject>Retrieval algorithms</subject><subject>Sea measurements</subject><subject>Space</subject><subject>Teledetecció</subject><subject>Total correlation</subject><subject>Àrees temàtiques de la UPC</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNpNkE1LAzEQhhdRsFZ_gHgJeN6a2SSb2ZNo6YfSolgFbyHNTqCl7WqyRfvv3aVFPQzzwbwvM0-SXALvAfDiZjJ6mfUyDrKXCYRcwlHSAaUw5UrDcVtLlaoC30-TsxiXnGcSUXeSx3H1xaZ2s2PPNtg11RQi69sNu6dm_L1Y29VqxwaxbqqaSjYM1ZpZNqOaVZ5NycZtoDVt6nh7npx4u4p0ccjd5G04eO2P08nT6KF_N0mdlFinIitKV3LrLWGh0OXzecZ5qZEL8KBVUc69095bjeUcwfpCOFAO0SKAcEJ0E9j7urh1JpCj4GxtKrv4a9rIuM6MkDlmstFc7zUfofrcUqzNstqGTXOmgVxJzHOt1T_nUMUYyJuP0Pwddga4aTGbFrNpMZsD5kZztdcsiOh3X3MuUeTiB_fHd8c</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Konings, Alexandra G.</creator><creator>McColl, Kaighin A.</creator><creator>Piles, María</creator><creator>Entekhabi, Dara</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>XX2</scope></search><sort><creationdate>20150501</creationdate><title>How Many Parameters Can Be Maximally Estimated From a Set of Measurements?</title><author>Konings, Alexandra G. ; McColl, Kaighin A. ; Piles, María ; Entekhabi, Dara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-329dcd0afae8958c6bb200d78031f1759dbfc7ffa78db81af93c15c88a8113c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorismes</topic><topic>Algorithm design</topic><topic>Algorithms</topic><topic>Classification</topic><topic>Correlation</topic><topic>Enginyeria de la telecomunicació</topic><topic>Intrinsic dimensionality estimation</topic><topic>Joints</topic><topic>Mutual information</topic><topic>Radar</topic><topic>Radiocomunicació i exploració electromagnètica</topic><topic>Remote sensing</topic><topic>Retrieval</topic><topic>Retrieval algorithms</topic><topic>Sea measurements</topic><topic>Space</topic><topic>Teledetecció</topic><topic>Total correlation</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Konings, Alexandra G.</creatorcontrib><creatorcontrib>McColl, Kaighin A.</creatorcontrib><creatorcontrib>Piles, María</creatorcontrib><creatorcontrib>Entekhabi, Dara</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Recercat</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Konings, Alexandra G.</au><au>McColl, Kaighin A.</au><au>Piles, María</au><au>Entekhabi, Dara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How Many Parameters Can Be Maximally Estimated From a Set of Measurements?</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2015-05-01</date><risdate>2015</risdate><volume>12</volume><issue>5</issue><spage>1081</spage><epage>1085</epage><pages>1081-1085</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Remote sensing algorithms often invert multiple measurements simultaneously to retrieve a group of geophysical parameters. In order to create a robust retrieval algorithm, it is necessary to ensure that there are more unique measurements than parameters to be retrieved. If this is not the case, the inversion might have multiple solutions and be sensitive to noise. In this letter, we introduce a methodology to calculate the number of (possibly fractional) "degrees of information" in a set of measurements, representing the number of parameters that can be retrieved robustly from that set. Since different measurements may not be mutually independent, the amount of duplicate information is calculated using the information-theoretic concept of total correlation (a generalization of mutual information). The total correlation is sensitive to the full distribution of each measurement and therefore accounts for duplicate information even if multiple measurements are related only partially and nonlinearly. The method is illustrated using several examples, and applications to a variety of sensor types are discussed.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2014.2381641</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2015-05, Vol.12 (5), p.1081-1085
issn 1545-598X
1558-0571
language eng
recordid cdi_proquest_journals_1654866775
source IEEE Xplore (Online service)
subjects Algorismes
Algorithm design
Algorithms
Classification
Correlation
Enginyeria de la telecomunicació
Intrinsic dimensionality estimation
Joints
Mutual information
Radar
Radiocomunicació i exploració electromagnètica
Remote sensing
Retrieval
Retrieval algorithms
Sea measurements
Space
Teledetecció
Total correlation
Àrees temàtiques de la UPC
title How Many Parameters Can Be Maximally Estimated From a Set of Measurements?
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A05%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_csuc_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20Many%20Parameters%20Can%20Be%20Maximally%20Estimated%20From%20a%20Set%20of%20Measurements?&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Konings,%20Alexandra%20G.&rft.date=2015-05-01&rft.volume=12&rft.issue=5&rft.spage=1081&rft.epage=1085&rft.pages=1081-1085&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2014.2381641&rft_dat=%3Cproquest_csuc_%3E3589028311%3C/proquest_csuc_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c448t-329dcd0afae8958c6bb200d78031f1759dbfc7ffa78db81af93c15c88a8113c33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1654866775&rft_id=info:pmid/&rft_ieee_id=7004836&rfr_iscdi=true