Loading…
Liposome Encapsulated Albumin-Paclitaxel Nanoparticle for Enhanced Antitumor Efficacy
ABSTRACT Purpose Albumin nanoparticles have been explored as a promising delivery system for various therapeutic agents. One limitation of such formulations is their poor colloidal stability in vivo . Present study aimed at enhancing the chemotherapeutic potential of paclitaxel by improving the coll...
Saved in:
Published in: | Pharmaceutical research 2015-03, Vol.32 (3), p.1002-1016 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c438t-61aba7852e219b211f9e9dd59513e86ed2d05c6895d2ffa17d8fe2b96a8491da3 |
---|---|
cites | cdi_FETCH-LOGICAL-c438t-61aba7852e219b211f9e9dd59513e86ed2d05c6895d2ffa17d8fe2b96a8491da3 |
container_end_page | 1016 |
container_issue | 3 |
container_start_page | 1002 |
container_title | Pharmaceutical research |
container_volume | 32 |
creator | Ruttala, Hima Bindu Ko, Young Tag |
description | ABSTRACT
Purpose
Albumin nanoparticles have been explored as a promising delivery system for various therapeutic agents. One limitation of such formulations is their poor colloidal stability
in vivo
. Present study aimed at enhancing the chemotherapeutic potential of paclitaxel by improving the colloidal stability and pharmacokinetic properties of albumin-paclitaxel nanoparticles (APNs) such as Abraxane®.
Methods
This was accomplished by encapsulating the preformed APNs into PEGylated liposomal bilayer by thin-film hydration/extrusion technique.
Results
The resulting liposome-encapsulated albumin-paclitaxel hybrid nanoparticles (L-APNs) were nanosized (~200 nm) with uniform spherical dimensions. The successful incorporation of albumin-paclitaxel nanoparticle (NP) in liposome was confirmed by size exclusion chromatography analysis. Such hybrid NP showed an excellent colloidal stability even at 100-fold dilutions, overcoming the critical drawback associated with simple albumin-paclitaxel NP system. L-APNs further showed higher cytotoxic activity towards B16F10 and MCF-7 cells than APN; this effect was characterized by arrest at the G
2
/M phase and a higher prevalence of apoptotic subG
1
cells. Finally, pharmacokinetic and biodistribution studies in tumor mice demonstrated that L-APNs showed a significantly enhanced plasma half-life, and preferential accumulation in the tumor.
Conclusions
Taken together, the data indicate that L-APNs can be promising therapeutic vehicles for enhanced delivery of PTX to tumor sites. |
doi_str_mv | 10.1007/s11095-014-1512-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1655082521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3590284851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-61aba7852e219b211f9e9dd59513e86ed2d05c6895d2ffa17d8fe2b96a8491da3</originalsourceid><addsrcrecordid>eNp1kEtLAzEQx4MotlY_gBcpeI5msptNciylPqCoBwveQjYP3bIvk12w395dq-LF08DM_8H8EDoHcgWE8OsIQCTDBFIMDCimB2gKjCdYkvTlEE0JpykWPIUJOolxSwgRINNjNKGMQsI5n6LNumib2FRuvqqNbmNf6s7Z-aLM-6qo8ZM2ZdHpD1fOH3TdtDp0hSnd3DdhMLzp2oziuiu6vhpX3hdGm90pOvK6jO7se87Q5mb1vLzD68fb--VijU2aiA5noHPNBaOOgswpgJdOWsskg8SJzFlqCTOZkMxS7zVwK7yjucy0SCVYnczQ5T63Dc1772Kntk0f6qFSQcYYEV-PzhDsVSY0MQbnVRuKSoedAqJGkGoPUg0g1QhS0cFz8Z3c55Wzv44fcoOA7gVxONWvLvyp_jf1E5LdfkE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1655082521</pqid></control><display><type>article</type><title>Liposome Encapsulated Albumin-Paclitaxel Nanoparticle for Enhanced Antitumor Efficacy</title><source>Springer Nature</source><creator>Ruttala, Hima Bindu ; Ko, Young Tag</creator><creatorcontrib>Ruttala, Hima Bindu ; Ko, Young Tag</creatorcontrib><description>ABSTRACT
Purpose
Albumin nanoparticles have been explored as a promising delivery system for various therapeutic agents. One limitation of such formulations is their poor colloidal stability
in vivo
. Present study aimed at enhancing the chemotherapeutic potential of paclitaxel by improving the colloidal stability and pharmacokinetic properties of albumin-paclitaxel nanoparticles (APNs) such as Abraxane®.
Methods
This was accomplished by encapsulating the preformed APNs into PEGylated liposomal bilayer by thin-film hydration/extrusion technique.
Results
The resulting liposome-encapsulated albumin-paclitaxel hybrid nanoparticles (L-APNs) were nanosized (~200 nm) with uniform spherical dimensions. The successful incorporation of albumin-paclitaxel nanoparticle (NP) in liposome was confirmed by size exclusion chromatography analysis. Such hybrid NP showed an excellent colloidal stability even at 100-fold dilutions, overcoming the critical drawback associated with simple albumin-paclitaxel NP system. L-APNs further showed higher cytotoxic activity towards B16F10 and MCF-7 cells than APN; this effect was characterized by arrest at the G
2
/M phase and a higher prevalence of apoptotic subG
1
cells. Finally, pharmacokinetic and biodistribution studies in tumor mice demonstrated that L-APNs showed a significantly enhanced plasma half-life, and preferential accumulation in the tumor.
Conclusions
Taken together, the data indicate that L-APNs can be promising therapeutic vehicles for enhanced delivery of PTX to tumor sites.</description><identifier>ISSN: 0724-8741</identifier><identifier>EISSN: 1573-904X</identifier><identifier>DOI: 10.1007/s11095-014-1512-2</identifier><identifier>PMID: 25213777</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Albumin-Bound Paclitaxel ; Albumins - chemistry ; Animals ; Antineoplastic Agents, Phytogenic - administration & dosage ; Antineoplastic Agents, Phytogenic - chemistry ; Antineoplastic Agents, Phytogenic - pharmacokinetics ; Antineoplastic Agents, Phytogenic - pharmacology ; Biochemistry ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Breast Neoplasms - metabolism ; Breast Neoplasms - pathology ; Cell Survival - drug effects ; Chemistry, Pharmaceutical ; Chemotherapy ; Drug delivery systems ; Drug Stability ; Female ; G2 Phase Cell Cycle Checkpoints - drug effects ; Half-Life ; Humans ; Injections, Intravenous ; Lipids - chemistry ; Liposomes ; Male ; MCF-7 Cells ; Medical Law ; Melanoma, Experimental - metabolism ; Melanoma, Experimental - pathology ; Mice ; Mice, Inbred BALB C ; Nanomedicine ; Nanoparticles ; Paclitaxel - administration & dosage ; Paclitaxel - chemistry ; Paclitaxel - pharmacokinetics ; Paclitaxel - pharmacology ; Particle Size ; Pharmaceutical sciences ; Pharmacology/Toxicology ; Pharmacy ; Polyethylene Glycols - chemistry ; Proteins ; Research Paper ; Solubility ; Technology, Pharmaceutical - methods ; Tissue Distribution ; Tumors</subject><ispartof>Pharmaceutical research, 2015-03, Vol.32 (3), p.1002-1016</ispartof><rights>Springer Science+Business Media New York 2014</rights><rights>Springer Science+Business Media New York 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-61aba7852e219b211f9e9dd59513e86ed2d05c6895d2ffa17d8fe2b96a8491da3</citedby><cites>FETCH-LOGICAL-c438t-61aba7852e219b211f9e9dd59513e86ed2d05c6895d2ffa17d8fe2b96a8491da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25213777$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ruttala, Hima Bindu</creatorcontrib><creatorcontrib>Ko, Young Tag</creatorcontrib><title>Liposome Encapsulated Albumin-Paclitaxel Nanoparticle for Enhanced Antitumor Efficacy</title><title>Pharmaceutical research</title><addtitle>Pharm Res</addtitle><addtitle>Pharm Res</addtitle><description>ABSTRACT
Purpose
Albumin nanoparticles have been explored as a promising delivery system for various therapeutic agents. One limitation of such formulations is their poor colloidal stability
in vivo
. Present study aimed at enhancing the chemotherapeutic potential of paclitaxel by improving the colloidal stability and pharmacokinetic properties of albumin-paclitaxel nanoparticles (APNs) such as Abraxane®.
Methods
This was accomplished by encapsulating the preformed APNs into PEGylated liposomal bilayer by thin-film hydration/extrusion technique.
Results
The resulting liposome-encapsulated albumin-paclitaxel hybrid nanoparticles (L-APNs) were nanosized (~200 nm) with uniform spherical dimensions. The successful incorporation of albumin-paclitaxel nanoparticle (NP) in liposome was confirmed by size exclusion chromatography analysis. Such hybrid NP showed an excellent colloidal stability even at 100-fold dilutions, overcoming the critical drawback associated with simple albumin-paclitaxel NP system. L-APNs further showed higher cytotoxic activity towards B16F10 and MCF-7 cells than APN; this effect was characterized by arrest at the G
2
/M phase and a higher prevalence of apoptotic subG
1
cells. Finally, pharmacokinetic and biodistribution studies in tumor mice demonstrated that L-APNs showed a significantly enhanced plasma half-life, and preferential accumulation in the tumor.
Conclusions
Taken together, the data indicate that L-APNs can be promising therapeutic vehicles for enhanced delivery of PTX to tumor sites.</description><subject>Albumin-Bound Paclitaxel</subject><subject>Albumins - chemistry</subject><subject>Animals</subject><subject>Antineoplastic Agents, Phytogenic - administration & dosage</subject><subject>Antineoplastic Agents, Phytogenic - chemistry</subject><subject>Antineoplastic Agents, Phytogenic - pharmacokinetics</subject><subject>Antineoplastic Agents, Phytogenic - pharmacology</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Breast Neoplasms - metabolism</subject><subject>Breast Neoplasms - pathology</subject><subject>Cell Survival - drug effects</subject><subject>Chemistry, Pharmaceutical</subject><subject>Chemotherapy</subject><subject>Drug delivery systems</subject><subject>Drug Stability</subject><subject>Female</subject><subject>G2 Phase Cell Cycle Checkpoints - drug effects</subject><subject>Half-Life</subject><subject>Humans</subject><subject>Injections, Intravenous</subject><subject>Lipids - chemistry</subject><subject>Liposomes</subject><subject>Male</subject><subject>MCF-7 Cells</subject><subject>Medical Law</subject><subject>Melanoma, Experimental - metabolism</subject><subject>Melanoma, Experimental - pathology</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Nanomedicine</subject><subject>Nanoparticles</subject><subject>Paclitaxel - administration & dosage</subject><subject>Paclitaxel - chemistry</subject><subject>Paclitaxel - pharmacokinetics</subject><subject>Paclitaxel - pharmacology</subject><subject>Particle Size</subject><subject>Pharmaceutical sciences</subject><subject>Pharmacology/Toxicology</subject><subject>Pharmacy</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Proteins</subject><subject>Research Paper</subject><subject>Solubility</subject><subject>Technology, Pharmaceutical - methods</subject><subject>Tissue Distribution</subject><subject>Tumors</subject><issn>0724-8741</issn><issn>1573-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEQx4MotlY_gBcpeI5msptNciylPqCoBwveQjYP3bIvk12w395dq-LF08DM_8H8EDoHcgWE8OsIQCTDBFIMDCimB2gKjCdYkvTlEE0JpykWPIUJOolxSwgRINNjNKGMQsI5n6LNumib2FRuvqqNbmNf6s7Z-aLM-6qo8ZM2ZdHpD1fOH3TdtDp0hSnd3DdhMLzp2oziuiu6vhpX3hdGm90pOvK6jO7se87Q5mb1vLzD68fb--VijU2aiA5noHPNBaOOgswpgJdOWsskg8SJzFlqCTOZkMxS7zVwK7yjucy0SCVYnczQ5T63Dc1772Kntk0f6qFSQcYYEV-PzhDsVSY0MQbnVRuKSoedAqJGkGoPUg0g1QhS0cFz8Z3c55Wzv44fcoOA7gVxONWvLvyp_jf1E5LdfkE</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Ruttala, Hima Bindu</creator><creator>Ko, Young Tag</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>NAPCQ</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20150301</creationdate><title>Liposome Encapsulated Albumin-Paclitaxel Nanoparticle for Enhanced Antitumor Efficacy</title><author>Ruttala, Hima Bindu ; Ko, Young Tag</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-61aba7852e219b211f9e9dd59513e86ed2d05c6895d2ffa17d8fe2b96a8491da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Albumin-Bound Paclitaxel</topic><topic>Albumins - chemistry</topic><topic>Animals</topic><topic>Antineoplastic Agents, Phytogenic - administration & dosage</topic><topic>Antineoplastic Agents, Phytogenic - chemistry</topic><topic>Antineoplastic Agents, Phytogenic - pharmacokinetics</topic><topic>Antineoplastic Agents, Phytogenic - pharmacology</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Breast Neoplasms - metabolism</topic><topic>Breast Neoplasms - pathology</topic><topic>Cell Survival - drug effects</topic><topic>Chemistry, Pharmaceutical</topic><topic>Chemotherapy</topic><topic>Drug delivery systems</topic><topic>Drug Stability</topic><topic>Female</topic><topic>G2 Phase Cell Cycle Checkpoints - drug effects</topic><topic>Half-Life</topic><topic>Humans</topic><topic>Injections, Intravenous</topic><topic>Lipids - chemistry</topic><topic>Liposomes</topic><topic>Male</topic><topic>MCF-7 Cells</topic><topic>Medical Law</topic><topic>Melanoma, Experimental - metabolism</topic><topic>Melanoma, Experimental - pathology</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Nanomedicine</topic><topic>Nanoparticles</topic><topic>Paclitaxel - administration & dosage</topic><topic>Paclitaxel - chemistry</topic><topic>Paclitaxel - pharmacokinetics</topic><topic>Paclitaxel - pharmacology</topic><topic>Particle Size</topic><topic>Pharmaceutical sciences</topic><topic>Pharmacology/Toxicology</topic><topic>Pharmacy</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Proteins</topic><topic>Research Paper</topic><topic>Solubility</topic><topic>Technology, Pharmaceutical - methods</topic><topic>Tissue Distribution</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruttala, Hima Bindu</creatorcontrib><creatorcontrib>Ko, Young Tag</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Pharmaceutical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruttala, Hima Bindu</au><au>Ko, Young Tag</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Liposome Encapsulated Albumin-Paclitaxel Nanoparticle for Enhanced Antitumor Efficacy</atitle><jtitle>Pharmaceutical research</jtitle><stitle>Pharm Res</stitle><addtitle>Pharm Res</addtitle><date>2015-03-01</date><risdate>2015</risdate><volume>32</volume><issue>3</issue><spage>1002</spage><epage>1016</epage><pages>1002-1016</pages><issn>0724-8741</issn><eissn>1573-904X</eissn><abstract>ABSTRACT
Purpose
Albumin nanoparticles have been explored as a promising delivery system for various therapeutic agents. One limitation of such formulations is their poor colloidal stability
in vivo
. Present study aimed at enhancing the chemotherapeutic potential of paclitaxel by improving the colloidal stability and pharmacokinetic properties of albumin-paclitaxel nanoparticles (APNs) such as Abraxane®.
Methods
This was accomplished by encapsulating the preformed APNs into PEGylated liposomal bilayer by thin-film hydration/extrusion technique.
Results
The resulting liposome-encapsulated albumin-paclitaxel hybrid nanoparticles (L-APNs) were nanosized (~200 nm) with uniform spherical dimensions. The successful incorporation of albumin-paclitaxel nanoparticle (NP) in liposome was confirmed by size exclusion chromatography analysis. Such hybrid NP showed an excellent colloidal stability even at 100-fold dilutions, overcoming the critical drawback associated with simple albumin-paclitaxel NP system. L-APNs further showed higher cytotoxic activity towards B16F10 and MCF-7 cells than APN; this effect was characterized by arrest at the G
2
/M phase and a higher prevalence of apoptotic subG
1
cells. Finally, pharmacokinetic and biodistribution studies in tumor mice demonstrated that L-APNs showed a significantly enhanced plasma half-life, and preferential accumulation in the tumor.
Conclusions
Taken together, the data indicate that L-APNs can be promising therapeutic vehicles for enhanced delivery of PTX to tumor sites.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>25213777</pmid><doi>10.1007/s11095-014-1512-2</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0724-8741 |
ispartof | Pharmaceutical research, 2015-03, Vol.32 (3), p.1002-1016 |
issn | 0724-8741 1573-904X |
language | eng |
recordid | cdi_proquest_journals_1655082521 |
source | Springer Nature |
subjects | Albumin-Bound Paclitaxel Albumins - chemistry Animals Antineoplastic Agents, Phytogenic - administration & dosage Antineoplastic Agents, Phytogenic - chemistry Antineoplastic Agents, Phytogenic - pharmacokinetics Antineoplastic Agents, Phytogenic - pharmacology Biochemistry Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Breast Neoplasms - metabolism Breast Neoplasms - pathology Cell Survival - drug effects Chemistry, Pharmaceutical Chemotherapy Drug delivery systems Drug Stability Female G2 Phase Cell Cycle Checkpoints - drug effects Half-Life Humans Injections, Intravenous Lipids - chemistry Liposomes Male MCF-7 Cells Medical Law Melanoma, Experimental - metabolism Melanoma, Experimental - pathology Mice Mice, Inbred BALB C Nanomedicine Nanoparticles Paclitaxel - administration & dosage Paclitaxel - chemistry Paclitaxel - pharmacokinetics Paclitaxel - pharmacology Particle Size Pharmaceutical sciences Pharmacology/Toxicology Pharmacy Polyethylene Glycols - chemistry Proteins Research Paper Solubility Technology, Pharmaceutical - methods Tissue Distribution Tumors |
title | Liposome Encapsulated Albumin-Paclitaxel Nanoparticle for Enhanced Antitumor Efficacy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-22T00%3A08%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Liposome%20Encapsulated%20Albumin-Paclitaxel%20Nanoparticle%20for%20Enhanced%20Antitumor%20Efficacy&rft.jtitle=Pharmaceutical%20research&rft.au=Ruttala,%20Hima%20Bindu&rft.date=2015-03-01&rft.volume=32&rft.issue=3&rft.spage=1002&rft.epage=1016&rft.pages=1002-1016&rft.issn=0724-8741&rft.eissn=1573-904X&rft_id=info:doi/10.1007/s11095-014-1512-2&rft_dat=%3Cproquest_cross%3E3590284851%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-61aba7852e219b211f9e9dd59513e86ed2d05c6895d2ffa17d8fe2b96a8491da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1655082521&rft_id=info:pmid/25213777&rfr_iscdi=true |