Loading…
A general optimality criteria algorithm for a class of engineering optimization problems
An optimality criteria (OC)-based algorithm for optimization of a general class of nonlinear programming (NLP) problems is presented. The algorithm is only applicable to problems where the objective and constraint functions satisfy certain monotonicity properties. For multiply constrained problems w...
Saved in:
Published in: | Engineering optimization 2015-05, Vol.47 (5), p.674-688 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c438t-1251296f326fced6bbc192018198676b3c931b58eae285870d539e7d089eeada3 |
---|---|
cites | cdi_FETCH-LOGICAL-c438t-1251296f326fced6bbc192018198676b3c931b58eae285870d539e7d089eeada3 |
container_end_page | 688 |
container_issue | 5 |
container_start_page | 674 |
container_title | Engineering optimization |
container_volume | 47 |
creator | Belegundu, Ashok D. |
description | An optimality criteria (OC)-based algorithm for optimization of a general class of nonlinear programming (NLP) problems is presented. The algorithm is only applicable to problems where the objective and constraint functions satisfy certain monotonicity properties. For multiply constrained problems which satisfy these assumptions, the algorithm is attractive compared with existing NLP methods as well as prevalent OC methods, as the latter involve computationally expensive active set and step-size control strategies. The fixed point algorithm presented here is applicable not only to structural optimization problems but also to certain problems as occur in resource allocation and inventory models. Convergence aspects are discussed. The fixed point update or resizing formula is given physical significance, which brings out a strength and trim feature. The number of function evaluations remains independent of the number of variables, allowing the efficient solution of problems with large number of variables. |
doi_str_mv | 10.1080/0305215X.2014.914191 |
format | article |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_1660759203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3615217301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-1251296f326fced6bbc192018198676b3c931b58eae285870d539e7d089eeada3</originalsourceid><addsrcrecordid>eNp9kDtrIzEURkXIwjre_QdbCNKkGedqNA-pCiHkBYE0WXAnNJo7joxGcqQxwfvrV2aSJkWqe4vz3cch5A-DFQMBl8ChLlm9XpXAqpVkFZPshCwYlLKAsuWnZHFEiiPzk5yltAVgHEAsyPqabtBj1I6G3WRH7ex0oCbaCaPVVLtNyP3rSIcQqabG6ZRoGCj6jfWYGb-Zg_afnmzwdBdD53BMv8iPQbuEvz_qkvy9u325eSienu8fb66fClNxMRWsrFkpm4GXzWCwb7rOMJnfEEyKpm06biRnXS1QYylq0UJfc4ltD0Ii6l7zJbmY5-bFb3tMkxptMuic9hj2SbGmbSVUragyev4F3YZ99Pm6TDXQ1nkxz1Q1UyaGlCIOahezl3hQDNRRt_rUrY661aw7x67mmPVZ1ajfQ3S9mvTBhThE7Y1Nin874T_dHIaJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660759203</pqid></control><display><type>article</type><title>A general optimality criteria algorithm for a class of engineering optimization problems</title><source>Taylor and Francis Science and Technology Collection</source><creator>Belegundu, Ashok D.</creator><creatorcontrib>Belegundu, Ashok D.</creatorcontrib><description>An optimality criteria (OC)-based algorithm for optimization of a general class of nonlinear programming (NLP) problems is presented. The algorithm is only applicable to problems where the objective and constraint functions satisfy certain monotonicity properties. For multiply constrained problems which satisfy these assumptions, the algorithm is attractive compared with existing NLP methods as well as prevalent OC methods, as the latter involve computationally expensive active set and step-size control strategies. The fixed point algorithm presented here is applicable not only to structural optimization problems but also to certain problems as occur in resource allocation and inventory models. Convergence aspects are discussed. The fixed point update or resizing formula is given physical significance, which brings out a strength and trim feature. The number of function evaluations remains independent of the number of variables, allowing the efficient solution of problems with large number of variables.</description><identifier>ISSN: 0305-215X</identifier><identifier>EISSN: 1029-0273</identifier><identifier>DOI: 10.1080/0305215X.2014.914191</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>Algorithms ; Comparative analysis ; Convergence ; Criteria ; fixed point algorithm ; Mathematical analysis ; Mathematical functions ; Mathematical models ; Mathematical problems ; Nonlinear programming ; Optimality criteria ; Optimization ; Optimization algorithms ; Performance evaluation ; re-sizing ; Resource allocation ; Strategy ; surrogate multiplier method</subject><ispartof>Engineering optimization, 2015-05, Vol.47 (5), p.674-688</ispartof><rights>2014 Taylor & Francis 2014</rights><rights>Copyright Taylor & Francis Ltd. 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-1251296f326fced6bbc192018198676b3c931b58eae285870d539e7d089eeada3</citedby><cites>FETCH-LOGICAL-c438t-1251296f326fced6bbc192018198676b3c931b58eae285870d539e7d089eeada3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Belegundu, Ashok D.</creatorcontrib><title>A general optimality criteria algorithm for a class of engineering optimization problems</title><title>Engineering optimization</title><description>An optimality criteria (OC)-based algorithm for optimization of a general class of nonlinear programming (NLP) problems is presented. The algorithm is only applicable to problems where the objective and constraint functions satisfy certain monotonicity properties. For multiply constrained problems which satisfy these assumptions, the algorithm is attractive compared with existing NLP methods as well as prevalent OC methods, as the latter involve computationally expensive active set and step-size control strategies. The fixed point algorithm presented here is applicable not only to structural optimization problems but also to certain problems as occur in resource allocation and inventory models. Convergence aspects are discussed. The fixed point update or resizing formula is given physical significance, which brings out a strength and trim feature. The number of function evaluations remains independent of the number of variables, allowing the efficient solution of problems with large number of variables.</description><subject>Algorithms</subject><subject>Comparative analysis</subject><subject>Convergence</subject><subject>Criteria</subject><subject>fixed point algorithm</subject><subject>Mathematical analysis</subject><subject>Mathematical functions</subject><subject>Mathematical models</subject><subject>Mathematical problems</subject><subject>Nonlinear programming</subject><subject>Optimality criteria</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Performance evaluation</subject><subject>re-sizing</subject><subject>Resource allocation</subject><subject>Strategy</subject><subject>surrogate multiplier method</subject><issn>0305-215X</issn><issn>1029-0273</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kDtrIzEURkXIwjre_QdbCNKkGedqNA-pCiHkBYE0WXAnNJo7joxGcqQxwfvrV2aSJkWqe4vz3cch5A-DFQMBl8ChLlm9XpXAqpVkFZPshCwYlLKAsuWnZHFEiiPzk5yltAVgHEAsyPqabtBj1I6G3WRH7ex0oCbaCaPVVLtNyP3rSIcQqabG6ZRoGCj6jfWYGb-Zg_afnmzwdBdD53BMv8iPQbuEvz_qkvy9u325eSienu8fb66fClNxMRWsrFkpm4GXzWCwb7rOMJnfEEyKpm06biRnXS1QYylq0UJfc4ltD0Ii6l7zJbmY5-bFb3tMkxptMuic9hj2SbGmbSVUragyev4F3YZ99Pm6TDXQ1nkxz1Q1UyaGlCIOahezl3hQDNRRt_rUrY661aw7x67mmPVZ1ajfQ3S9mvTBhThE7Y1Nin874T_dHIaJ</recordid><startdate>20150504</startdate><enddate>20150504</enddate><creator>Belegundu, Ashok D.</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150504</creationdate><title>A general optimality criteria algorithm for a class of engineering optimization problems</title><author>Belegundu, Ashok D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-1251296f326fced6bbc192018198676b3c931b58eae285870d539e7d089eeada3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Comparative analysis</topic><topic>Convergence</topic><topic>Criteria</topic><topic>fixed point algorithm</topic><topic>Mathematical analysis</topic><topic>Mathematical functions</topic><topic>Mathematical models</topic><topic>Mathematical problems</topic><topic>Nonlinear programming</topic><topic>Optimality criteria</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Performance evaluation</topic><topic>re-sizing</topic><topic>Resource allocation</topic><topic>Strategy</topic><topic>surrogate multiplier method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Belegundu, Ashok D.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Engineering optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Belegundu, Ashok D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A general optimality criteria algorithm for a class of engineering optimization problems</atitle><jtitle>Engineering optimization</jtitle><date>2015-05-04</date><risdate>2015</risdate><volume>47</volume><issue>5</issue><spage>674</spage><epage>688</epage><pages>674-688</pages><issn>0305-215X</issn><eissn>1029-0273</eissn><abstract>An optimality criteria (OC)-based algorithm for optimization of a general class of nonlinear programming (NLP) problems is presented. The algorithm is only applicable to problems where the objective and constraint functions satisfy certain monotonicity properties. For multiply constrained problems which satisfy these assumptions, the algorithm is attractive compared with existing NLP methods as well as prevalent OC methods, as the latter involve computationally expensive active set and step-size control strategies. The fixed point algorithm presented here is applicable not only to structural optimization problems but also to certain problems as occur in resource allocation and inventory models. Convergence aspects are discussed. The fixed point update or resizing formula is given physical significance, which brings out a strength and trim feature. The number of function evaluations remains independent of the number of variables, allowing the efficient solution of problems with large number of variables.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/0305215X.2014.914191</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-215X |
ispartof | Engineering optimization, 2015-05, Vol.47 (5), p.674-688 |
issn | 0305-215X 1029-0273 |
language | eng |
recordid | cdi_proquest_journals_1660759203 |
source | Taylor and Francis Science and Technology Collection |
subjects | Algorithms Comparative analysis Convergence Criteria fixed point algorithm Mathematical analysis Mathematical functions Mathematical models Mathematical problems Nonlinear programming Optimality criteria Optimization Optimization algorithms Performance evaluation re-sizing Resource allocation Strategy surrogate multiplier method |
title | A general optimality criteria algorithm for a class of engineering optimization problems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T19%3A44%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20general%20optimality%20criteria%20algorithm%20for%20a%20class%20of%20engineering%20optimization%20problems&rft.jtitle=Engineering%20optimization&rft.au=Belegundu,%20Ashok%20D.&rft.date=2015-05-04&rft.volume=47&rft.issue=5&rft.spage=674&rft.epage=688&rft.pages=674-688&rft.issn=0305-215X&rft.eissn=1029-0273&rft_id=info:doi/10.1080/0305215X.2014.914191&rft_dat=%3Cproquest_infor%3E3615217301%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-1251296f326fced6bbc192018198676b3c931b58eae285870d539e7d089eeada3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1660759203&rft_id=info:pmid/&rfr_iscdi=true |