Loading…

A general optimality criteria algorithm for a class of engineering optimization problems

An optimality criteria (OC)-based algorithm for optimization of a general class of nonlinear programming (NLP) problems is presented. The algorithm is only applicable to problems where the objective and constraint functions satisfy certain monotonicity properties. For multiply constrained problems w...

Full description

Saved in:
Bibliographic Details
Published in:Engineering optimization 2015-05, Vol.47 (5), p.674-688
Main Author: Belegundu, Ashok D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c438t-1251296f326fced6bbc192018198676b3c931b58eae285870d539e7d089eeada3
cites cdi_FETCH-LOGICAL-c438t-1251296f326fced6bbc192018198676b3c931b58eae285870d539e7d089eeada3
container_end_page 688
container_issue 5
container_start_page 674
container_title Engineering optimization
container_volume 47
creator Belegundu, Ashok D.
description An optimality criteria (OC)-based algorithm for optimization of a general class of nonlinear programming (NLP) problems is presented. The algorithm is only applicable to problems where the objective and constraint functions satisfy certain monotonicity properties. For multiply constrained problems which satisfy these assumptions, the algorithm is attractive compared with existing NLP methods as well as prevalent OC methods, as the latter involve computationally expensive active set and step-size control strategies. The fixed point algorithm presented here is applicable not only to structural optimization problems but also to certain problems as occur in resource allocation and inventory models. Convergence aspects are discussed. The fixed point update or resizing formula is given physical significance, which brings out a strength and trim feature. The number of function evaluations remains independent of the number of variables, allowing the efficient solution of problems with large number of variables.
doi_str_mv 10.1080/0305215X.2014.914191
format article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_1660759203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3615217301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-1251296f326fced6bbc192018198676b3c931b58eae285870d539e7d089eeada3</originalsourceid><addsrcrecordid>eNp9kDtrIzEURkXIwjre_QdbCNKkGedqNA-pCiHkBYE0WXAnNJo7joxGcqQxwfvrV2aSJkWqe4vz3cch5A-DFQMBl8ChLlm9XpXAqpVkFZPshCwYlLKAsuWnZHFEiiPzk5yltAVgHEAsyPqabtBj1I6G3WRH7ex0oCbaCaPVVLtNyP3rSIcQqabG6ZRoGCj6jfWYGb-Zg_afnmzwdBdD53BMv8iPQbuEvz_qkvy9u325eSienu8fb66fClNxMRWsrFkpm4GXzWCwb7rOMJnfEEyKpm06biRnXS1QYylq0UJfc4ltD0Ii6l7zJbmY5-bFb3tMkxptMuic9hj2SbGmbSVUragyev4F3YZ99Pm6TDXQ1nkxz1Q1UyaGlCIOahezl3hQDNRRt_rUrY661aw7x67mmPVZ1ajfQ3S9mvTBhThE7Y1Nin874T_dHIaJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660759203</pqid></control><display><type>article</type><title>A general optimality criteria algorithm for a class of engineering optimization problems</title><source>Taylor and Francis Science and Technology Collection</source><creator>Belegundu, Ashok D.</creator><creatorcontrib>Belegundu, Ashok D.</creatorcontrib><description>An optimality criteria (OC)-based algorithm for optimization of a general class of nonlinear programming (NLP) problems is presented. The algorithm is only applicable to problems where the objective and constraint functions satisfy certain monotonicity properties. For multiply constrained problems which satisfy these assumptions, the algorithm is attractive compared with existing NLP methods as well as prevalent OC methods, as the latter involve computationally expensive active set and step-size control strategies. The fixed point algorithm presented here is applicable not only to structural optimization problems but also to certain problems as occur in resource allocation and inventory models. Convergence aspects are discussed. The fixed point update or resizing formula is given physical significance, which brings out a strength and trim feature. The number of function evaluations remains independent of the number of variables, allowing the efficient solution of problems with large number of variables.</description><identifier>ISSN: 0305-215X</identifier><identifier>EISSN: 1029-0273</identifier><identifier>DOI: 10.1080/0305215X.2014.914191</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Algorithms ; Comparative analysis ; Convergence ; Criteria ; fixed point algorithm ; Mathematical analysis ; Mathematical functions ; Mathematical models ; Mathematical problems ; Nonlinear programming ; Optimality criteria ; Optimization ; Optimization algorithms ; Performance evaluation ; re-sizing ; Resource allocation ; Strategy ; surrogate multiplier method</subject><ispartof>Engineering optimization, 2015-05, Vol.47 (5), p.674-688</ispartof><rights>2014 Taylor &amp; Francis 2014</rights><rights>Copyright Taylor &amp; Francis Ltd. 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-1251296f326fced6bbc192018198676b3c931b58eae285870d539e7d089eeada3</citedby><cites>FETCH-LOGICAL-c438t-1251296f326fced6bbc192018198676b3c931b58eae285870d539e7d089eeada3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Belegundu, Ashok D.</creatorcontrib><title>A general optimality criteria algorithm for a class of engineering optimization problems</title><title>Engineering optimization</title><description>An optimality criteria (OC)-based algorithm for optimization of a general class of nonlinear programming (NLP) problems is presented. The algorithm is only applicable to problems where the objective and constraint functions satisfy certain monotonicity properties. For multiply constrained problems which satisfy these assumptions, the algorithm is attractive compared with existing NLP methods as well as prevalent OC methods, as the latter involve computationally expensive active set and step-size control strategies. The fixed point algorithm presented here is applicable not only to structural optimization problems but also to certain problems as occur in resource allocation and inventory models. Convergence aspects are discussed. The fixed point update or resizing formula is given physical significance, which brings out a strength and trim feature. The number of function evaluations remains independent of the number of variables, allowing the efficient solution of problems with large number of variables.</description><subject>Algorithms</subject><subject>Comparative analysis</subject><subject>Convergence</subject><subject>Criteria</subject><subject>fixed point algorithm</subject><subject>Mathematical analysis</subject><subject>Mathematical functions</subject><subject>Mathematical models</subject><subject>Mathematical problems</subject><subject>Nonlinear programming</subject><subject>Optimality criteria</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Performance evaluation</subject><subject>re-sizing</subject><subject>Resource allocation</subject><subject>Strategy</subject><subject>surrogate multiplier method</subject><issn>0305-215X</issn><issn>1029-0273</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kDtrIzEURkXIwjre_QdbCNKkGedqNA-pCiHkBYE0WXAnNJo7joxGcqQxwfvrV2aSJkWqe4vz3cch5A-DFQMBl8ChLlm9XpXAqpVkFZPshCwYlLKAsuWnZHFEiiPzk5yltAVgHEAsyPqabtBj1I6G3WRH7ex0oCbaCaPVVLtNyP3rSIcQqabG6ZRoGCj6jfWYGb-Zg_afnmzwdBdD53BMv8iPQbuEvz_qkvy9u325eSienu8fb66fClNxMRWsrFkpm4GXzWCwb7rOMJnfEEyKpm06biRnXS1QYylq0UJfc4ltD0Ii6l7zJbmY5-bFb3tMkxptMuic9hj2SbGmbSVUragyev4F3YZ99Pm6TDXQ1nkxz1Q1UyaGlCIOahezl3hQDNRRt_rUrY661aw7x67mmPVZ1ajfQ3S9mvTBhThE7Y1Nin874T_dHIaJ</recordid><startdate>20150504</startdate><enddate>20150504</enddate><creator>Belegundu, Ashok D.</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150504</creationdate><title>A general optimality criteria algorithm for a class of engineering optimization problems</title><author>Belegundu, Ashok D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-1251296f326fced6bbc192018198676b3c931b58eae285870d539e7d089eeada3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Comparative analysis</topic><topic>Convergence</topic><topic>Criteria</topic><topic>fixed point algorithm</topic><topic>Mathematical analysis</topic><topic>Mathematical functions</topic><topic>Mathematical models</topic><topic>Mathematical problems</topic><topic>Nonlinear programming</topic><topic>Optimality criteria</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Performance evaluation</topic><topic>re-sizing</topic><topic>Resource allocation</topic><topic>Strategy</topic><topic>surrogate multiplier method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Belegundu, Ashok D.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Engineering optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Belegundu, Ashok D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A general optimality criteria algorithm for a class of engineering optimization problems</atitle><jtitle>Engineering optimization</jtitle><date>2015-05-04</date><risdate>2015</risdate><volume>47</volume><issue>5</issue><spage>674</spage><epage>688</epage><pages>674-688</pages><issn>0305-215X</issn><eissn>1029-0273</eissn><abstract>An optimality criteria (OC)-based algorithm for optimization of a general class of nonlinear programming (NLP) problems is presented. The algorithm is only applicable to problems where the objective and constraint functions satisfy certain monotonicity properties. For multiply constrained problems which satisfy these assumptions, the algorithm is attractive compared with existing NLP methods as well as prevalent OC methods, as the latter involve computationally expensive active set and step-size control strategies. The fixed point algorithm presented here is applicable not only to structural optimization problems but also to certain problems as occur in resource allocation and inventory models. Convergence aspects are discussed. The fixed point update or resizing formula is given physical significance, which brings out a strength and trim feature. The number of function evaluations remains independent of the number of variables, allowing the efficient solution of problems with large number of variables.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/0305215X.2014.914191</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0305-215X
ispartof Engineering optimization, 2015-05, Vol.47 (5), p.674-688
issn 0305-215X
1029-0273
language eng
recordid cdi_proquest_journals_1660759203
source Taylor and Francis Science and Technology Collection
subjects Algorithms
Comparative analysis
Convergence
Criteria
fixed point algorithm
Mathematical analysis
Mathematical functions
Mathematical models
Mathematical problems
Nonlinear programming
Optimality criteria
Optimization
Optimization algorithms
Performance evaluation
re-sizing
Resource allocation
Strategy
surrogate multiplier method
title A general optimality criteria algorithm for a class of engineering optimization problems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T19%3A44%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20general%20optimality%20criteria%20algorithm%20for%20a%20class%20of%20engineering%20optimization%20problems&rft.jtitle=Engineering%20optimization&rft.au=Belegundu,%20Ashok%20D.&rft.date=2015-05-04&rft.volume=47&rft.issue=5&rft.spage=674&rft.epage=688&rft.pages=674-688&rft.issn=0305-215X&rft.eissn=1029-0273&rft_id=info:doi/10.1080/0305215X.2014.914191&rft_dat=%3Cproquest_infor%3E3615217301%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-1251296f326fced6bbc192018198676b3c931b58eae285870d539e7d089eeada3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1660759203&rft_id=info:pmid/&rfr_iscdi=true