Loading…
Rényi entropy of locally excited states with thermal and boundary effect in 2D CFTs
A bstract We study Rényi entropy of locally excited states with considering the thermal and boundary effects respectively in two dimensional conformal field theories (CFTs). Firstly, we consider locally excited states obtained by acting primary operators on a thermal state in low temperature limit....
Saved in:
Published in: | The journal of high energy physics 2015-04, Vol.2015 (4), p.1, Article 99 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A
bstract
We study Rényi entropy of locally excited states with considering the thermal and boundary effects respectively in two dimensional conformal field theories (CFTs). Firstly, we consider locally excited states obtained by acting primary operators on a thermal state in low temperature limit. The Rényi entropy is summation of contribution from thermal effect and local excitation. Secondly, we mainly study the Rényi entropy of locally excited states in 2D CFT with a boundary. We show that the time evolution of Rényi entropy is affected by the boundary, but does not depend on the boundary condition. Moreover, we show that the maximal value of Rényi entropy always coincides with the log of quantum dimension of the primary operator. In terms of quasi-particle interpretation, the boundary behaves as an infinite potential barrier which reflects any energy moving towards it. |
---|---|
ISSN: | 1029-8479 1029-8479 |
DOI: | 10.1007/JHEP04(2015)099 |