Loading…

Thermoelectric Properties of Amorphous Zr-Ni-Sn Thin Films Deposited by Magnetron Sputtering

n -Type Zr-Ni-Sn thermoelectric thin films with thickness of 60 nm to 400 nm were deposited by radiofrequency magnetron sputtering. The microstructure of the Zr-Ni-Sn thin films was examined by x-ray diffractometry and high-resolution transmission electron microscopy, revealing an amorphous microstr...

Full description

Saved in:
Bibliographic Details
Published in:Journal of electronic materials 2015-06, Vol.44 (6), p.1957-1962
Main Authors: Zhou, Yang, Tan, Qing, Zhu, Jie, Li, Siyang, Liu, Chenjin, Lei, Yuxiong, Li, Liangliang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c495t-96faf7a3c71bd365187acf7b5fcb146544461e9233feed309c02302206d501c03
cites cdi_FETCH-LOGICAL-c495t-96faf7a3c71bd365187acf7b5fcb146544461e9233feed309c02302206d501c03
container_end_page 1962
container_issue 6
container_start_page 1957
container_title Journal of electronic materials
container_volume 44
creator Zhou, Yang
Tan, Qing
Zhu, Jie
Li, Siyang
Liu, Chenjin
Lei, Yuxiong
Li, Liangliang
description n -Type Zr-Ni-Sn thermoelectric thin films with thickness of 60 nm to 400 nm were deposited by radiofrequency magnetron sputtering. The microstructure of the Zr-Ni-Sn thin films was examined by x-ray diffractometry and high-resolution transmission electron microscopy, revealing an amorphous microstructure. The thermal conductivity of the amorphous films was measured by the ultrafast laser pump–probe thermoreflectance technique, revealing values of 1.4 W m −1  K −1 to 2.2 W m −1  K −1 , smaller than that of bulk material because of the amorphous microstructure of the films. The effects of the sputtering power on the composition, Seebeck coefficient, and electrical conductivity of the films were investigated. The largest Seebeck coefficient and power factor were achieved at 393 K, being −112.0  μ V K −1 and 2.66 mW K −2  m −1 , respectively. The low thermal conductivity and high power factor indicate that amorphous Zr-Ni-Sn thin films could be a promising material for use in thermoelectric microdevices.
doi_str_mv 10.1007/s11664-014-3610-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1676460354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3668977521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-96faf7a3c71bd365187acf7b5fcb146544461e9233feed309c02302206d501c03</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvAczSz-eoeS_2E-gGtICKE3WzSbmk3a5I99N-7ZT148TQwzPPOzIPQJdBroFTdRAApOaHACZNAiTpCIxCcEZjIj2M0on2XiIyJU3QW44ZSEDCBEfparm3Yebu1JoXa4LfgWxtSbSP2Dk93PrRr30X8GchLTRYNXq7rBt_X213Et7b1sU62wuUePxerxqbgG7xou5RsqJvVOTpxxTbai986Ru_3d8vZI5m_PjzNpnNieC4SyaUrnCqYUVBWTPaHqcI4VQpnSuBScM4l2DxjzFlbMZobmjGaZVRWgoKhbIyuhtw2-O_OxqQ3vgtNv1KDVJJLynoVYwTDlAk-xmCdbkO9K8JeA9UHiXqQqHuJ-iBRq57JBia2h4ds-JP8L_QDD6J0Rw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1676460354</pqid></control><display><type>article</type><title>Thermoelectric Properties of Amorphous Zr-Ni-Sn Thin Films Deposited by Magnetron Sputtering</title><source>Springer Nature</source><creator>Zhou, Yang ; Tan, Qing ; Zhu, Jie ; Li, Siyang ; Liu, Chenjin ; Lei, Yuxiong ; Li, Liangliang</creator><creatorcontrib>Zhou, Yang ; Tan, Qing ; Zhu, Jie ; Li, Siyang ; Liu, Chenjin ; Lei, Yuxiong ; Li, Liangliang</creatorcontrib><description>n -Type Zr-Ni-Sn thermoelectric thin films with thickness of 60 nm to 400 nm were deposited by radiofrequency magnetron sputtering. The microstructure of the Zr-Ni-Sn thin films was examined by x-ray diffractometry and high-resolution transmission electron microscopy, revealing an amorphous microstructure. The thermal conductivity of the amorphous films was measured by the ultrafast laser pump–probe thermoreflectance technique, revealing values of 1.4 W m −1  K −1 to 2.2 W m −1  K −1 , smaller than that of bulk material because of the amorphous microstructure of the films. The effects of the sputtering power on the composition, Seebeck coefficient, and electrical conductivity of the films were investigated. The largest Seebeck coefficient and power factor were achieved at 393 K, being −112.0  μ V K −1 and 2.66 mW K −2  m −1 , respectively. The low thermal conductivity and high power factor indicate that amorphous Zr-Ni-Sn thin films could be a promising material for use in thermoelectric microdevices.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-014-3610-7</identifier><identifier>CODEN: JECMA5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Electric properties ; Electronics and Microelectronics ; Heat conductivity ; Instrumentation ; Materials Science ; Optical and Electronic Materials ; Solid State Physics ; Thin films</subject><ispartof>Journal of electronic materials, 2015-06, Vol.44 (6), p.1957-1962</ispartof><rights>The Minerals, Metals &amp; Materials Society 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-96faf7a3c71bd365187acf7b5fcb146544461e9233feed309c02302206d501c03</citedby><cites>FETCH-LOGICAL-c495t-96faf7a3c71bd365187acf7b5fcb146544461e9233feed309c02302206d501c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhou, Yang</creatorcontrib><creatorcontrib>Tan, Qing</creatorcontrib><creatorcontrib>Zhu, Jie</creatorcontrib><creatorcontrib>Li, Siyang</creatorcontrib><creatorcontrib>Liu, Chenjin</creatorcontrib><creatorcontrib>Lei, Yuxiong</creatorcontrib><creatorcontrib>Li, Liangliang</creatorcontrib><title>Thermoelectric Properties of Amorphous Zr-Ni-Sn Thin Films Deposited by Magnetron Sputtering</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>n -Type Zr-Ni-Sn thermoelectric thin films with thickness of 60 nm to 400 nm were deposited by radiofrequency magnetron sputtering. The microstructure of the Zr-Ni-Sn thin films was examined by x-ray diffractometry and high-resolution transmission electron microscopy, revealing an amorphous microstructure. The thermal conductivity of the amorphous films was measured by the ultrafast laser pump–probe thermoreflectance technique, revealing values of 1.4 W m −1  K −1 to 2.2 W m −1  K −1 , smaller than that of bulk material because of the amorphous microstructure of the films. The effects of the sputtering power on the composition, Seebeck coefficient, and electrical conductivity of the films were investigated. The largest Seebeck coefficient and power factor were achieved at 393 K, being −112.0  μ V K −1 and 2.66 mW K −2  m −1 , respectively. The low thermal conductivity and high power factor indicate that amorphous Zr-Ni-Sn thin films could be a promising material for use in thermoelectric microdevices.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Electric properties</subject><subject>Electronics and Microelectronics</subject><subject>Heat conductivity</subject><subject>Instrumentation</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Solid State Physics</subject><subject>Thin films</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvAczSz-eoeS_2E-gGtICKE3WzSbmk3a5I99N-7ZT148TQwzPPOzIPQJdBroFTdRAApOaHACZNAiTpCIxCcEZjIj2M0on2XiIyJU3QW44ZSEDCBEfparm3Yebu1JoXa4LfgWxtSbSP2Dk93PrRr30X8GchLTRYNXq7rBt_X213Et7b1sU62wuUePxerxqbgG7xou5RsqJvVOTpxxTbai986Ru_3d8vZI5m_PjzNpnNieC4SyaUrnCqYUVBWTPaHqcI4VQpnSuBScM4l2DxjzFlbMZobmjGaZVRWgoKhbIyuhtw2-O_OxqQ3vgtNv1KDVJJLynoVYwTDlAk-xmCdbkO9K8JeA9UHiXqQqHuJ-iBRq57JBia2h4ds-JP8L_QDD6J0Rw</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Zhou, Yang</creator><creator>Tan, Qing</creator><creator>Zhu, Jie</creator><creator>Li, Siyang</creator><creator>Liu, Chenjin</creator><creator>Lei, Yuxiong</creator><creator>Li, Liangliang</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20150601</creationdate><title>Thermoelectric Properties of Amorphous Zr-Ni-Sn Thin Films Deposited by Magnetron Sputtering</title><author>Zhou, Yang ; Tan, Qing ; Zhu, Jie ; Li, Siyang ; Liu, Chenjin ; Lei, Yuxiong ; Li, Liangliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-96faf7a3c71bd365187acf7b5fcb146544461e9233feed309c02302206d501c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Electric properties</topic><topic>Electronics and Microelectronics</topic><topic>Heat conductivity</topic><topic>Instrumentation</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Solid State Physics</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Yang</creatorcontrib><creatorcontrib>Tan, Qing</creatorcontrib><creatorcontrib>Zhu, Jie</creatorcontrib><creatorcontrib>Li, Siyang</creatorcontrib><creatorcontrib>Liu, Chenjin</creatorcontrib><creatorcontrib>Lei, Yuxiong</creatorcontrib><creatorcontrib>Li, Liangliang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Yang</au><au>Tan, Qing</au><au>Zhu, Jie</au><au>Li, Siyang</au><au>Liu, Chenjin</au><au>Lei, Yuxiong</au><au>Li, Liangliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermoelectric Properties of Amorphous Zr-Ni-Sn Thin Films Deposited by Magnetron Sputtering</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2015-06-01</date><risdate>2015</risdate><volume>44</volume><issue>6</issue><spage>1957</spage><epage>1962</epage><pages>1957-1962</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><coden>JECMA5</coden><abstract>n -Type Zr-Ni-Sn thermoelectric thin films with thickness of 60 nm to 400 nm were deposited by radiofrequency magnetron sputtering. The microstructure of the Zr-Ni-Sn thin films was examined by x-ray diffractometry and high-resolution transmission electron microscopy, revealing an amorphous microstructure. The thermal conductivity of the amorphous films was measured by the ultrafast laser pump–probe thermoreflectance technique, revealing values of 1.4 W m −1  K −1 to 2.2 W m −1  K −1 , smaller than that of bulk material because of the amorphous microstructure of the films. The effects of the sputtering power on the composition, Seebeck coefficient, and electrical conductivity of the films were investigated. The largest Seebeck coefficient and power factor were achieved at 393 K, being −112.0  μ V K −1 and 2.66 mW K −2  m −1 , respectively. The low thermal conductivity and high power factor indicate that amorphous Zr-Ni-Sn thin films could be a promising material for use in thermoelectric microdevices.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-014-3610-7</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2015-06, Vol.44 (6), p.1957-1962
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_1676460354
source Springer Nature
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Electric properties
Electronics and Microelectronics
Heat conductivity
Instrumentation
Materials Science
Optical and Electronic Materials
Solid State Physics
Thin films
title Thermoelectric Properties of Amorphous Zr-Ni-Sn Thin Films Deposited by Magnetron Sputtering
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A20%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermoelectric%20Properties%20of%20Amorphous%20Zr-Ni-Sn%20Thin%20Films%20Deposited%20by%20Magnetron%20Sputtering&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Zhou,%20Yang&rft.date=2015-06-01&rft.volume=44&rft.issue=6&rft.spage=1957&rft.epage=1962&rft.pages=1957-1962&rft.issn=0361-5235&rft.eissn=1543-186X&rft.coden=JECMA5&rft_id=info:doi/10.1007/s11664-014-3610-7&rft_dat=%3Cproquest_cross%3E3668977521%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c495t-96faf7a3c71bd365187acf7b5fcb146544461e9233feed309c02302206d501c03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1676460354&rft_id=info:pmid/&rfr_iscdi=true