Loading…

Boundary Aware Reconstruction of Scalar Fields

In visualization, the combined role of data reconstruction and its classification plays a crucial role. In this paper we propose a novel approach that improves classification of different materials and their boundaries by combining information from the classifiers at the reconstruction stage. Our ap...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on visualization and computer graphics 2014-12, Vol.20 (12), p.2447-2455
Main Authors: Lindholm, Stefan, Jonsson, Daniel, Hansen, Charles, Ynnerman, Anders
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c387t-de65290e99764dc5332edafd0fd6eb9d2883762025f2dea91bc871140784492f3
cites cdi_FETCH-LOGICAL-c387t-de65290e99764dc5332edafd0fd6eb9d2883762025f2dea91bc871140784492f3
container_end_page 2455
container_issue 12
container_start_page 2447
container_title IEEE transactions on visualization and computer graphics
container_volume 20
creator Lindholm, Stefan
Jonsson, Daniel
Hansen, Charles
Ynnerman, Anders
description In visualization, the combined role of data reconstruction and its classification plays a crucial role. In this paper we propose a novel approach that improves classification of different materials and their boundaries by combining information from the classifiers at the reconstruction stage. Our approach estimates the targeted materials' local support before performing multiple material-specific reconstructions that prevent much of the misclassification traditionally associated with transitional regions and transfer function (TF) design. With respect to previously published methods our approach offers a number of improvements and advantages. For one, it does not rely on TFs acting on derivative expressions, therefore it is less sensitive to noisy data and the classification of a single material does not depend on specialized TF widgets or specifying regions in a multidimensional TF. Additionally, improved classification is attained without increasing TF dimensionality, which promotes scalability to multivariate data. These aspects are also key in maintaining low interaction complexity. The results are simple-to-achieve visualizations that better comply with the user's understanding of discrete features within the studied object.
doi_str_mv 10.1109/TVCG.2014.2346351
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_1676945972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6876035</ieee_id><sourcerecordid>1711540237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-de65290e99764dc5332edafd0fd6eb9d2883762025f2dea91bc871140784492f3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMofv8AEWTBi5et-c7mWKtWoSBo7TVkN7Oyst3UpIv4703Z2oOnDOSZd2YehC4IHhGC9e18MZmOKCZ8RBmXTJA9dEw0JzkWWO6nGiuVU0nlETqJ8RMnkhf6EB3RBEstimM0uvN952z4ycbfNkD2CpXv4jr01brxXebr7K2yrQ3ZYwOti2fooLZthPPte4reHx_mk6d89jJ9noxnecUKtc4dSEE1Bq2V5K4SjFFwtna4dhJK7WhRMCUppqKmDqwmZVUoQjhWBeea1uwU5UNu_IZVX5pVaJZpSeNtY-6bxdj48GHapjfJA6Uq8TcDvwr-q4e4NssmVtC2tgPfR0NSuuCYsg16_Q_99H3o0jWGSCU1F1rRRJGBqoKPMUC9W4HgzVBtNvLNRr7Zyk89V9vkvlyC23X82U7A5QA0ALD7loWSmAn2C0Sghcc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1676945972</pqid></control><display><type>article</type><title>Boundary Aware Reconstruction of Scalar Fields</title><source>IEEE Xplore (Online service)</source><creator>Lindholm, Stefan ; Jonsson, Daniel ; Hansen, Charles ; Ynnerman, Anders</creator><creatorcontrib>Lindholm, Stefan ; Jonsson, Daniel ; Hansen, Charles ; Ynnerman, Anders</creatorcontrib><description>In visualization, the combined role of data reconstruction and its classification plays a crucial role. In this paper we propose a novel approach that improves classification of different materials and their boundaries by combining information from the classifiers at the reconstruction stage. Our approach estimates the targeted materials' local support before performing multiple material-specific reconstructions that prevent much of the misclassification traditionally associated with transitional regions and transfer function (TF) design. With respect to previously published methods our approach offers a number of improvements and advantages. For one, it does not rely on TFs acting on derivative expressions, therefore it is less sensitive to noisy data and the classification of a single material does not depend on specialized TF widgets or specifying regions in a multidimensional TF. Additionally, improved classification is attained without increasing TF dimensionality, which promotes scalability to multivariate data. These aspects are also key in maintaining low interaction complexity. The results are simple-to-achieve visualizations that better comply with the user's understanding of discrete features within the studied object.</description><identifier>ISSN: 1077-2626</identifier><identifier>ISSN: 1941-0506</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2014.2346351</identifier><identifier>PMID: 26356958</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Boundary conditions ; Classification ; Data modeling ; Data visualization ; Image classification ; Image reconstruction ; Probabilistic logic ; Rendering (computer graphics)</subject><ispartof>IEEE transactions on visualization and computer graphics, 2014-12, Vol.20 (12), p.2447-2455</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-de65290e99764dc5332edafd0fd6eb9d2883762025f2dea91bc871140784492f3</citedby><cites>FETCH-LOGICAL-c387t-de65290e99764dc5332edafd0fd6eb9d2883762025f2dea91bc871140784492f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6876035$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26356958$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-110227$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Lindholm, Stefan</creatorcontrib><creatorcontrib>Jonsson, Daniel</creatorcontrib><creatorcontrib>Hansen, Charles</creatorcontrib><creatorcontrib>Ynnerman, Anders</creatorcontrib><title>Boundary Aware Reconstruction of Scalar Fields</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>In visualization, the combined role of data reconstruction and its classification plays a crucial role. In this paper we propose a novel approach that improves classification of different materials and their boundaries by combining information from the classifiers at the reconstruction stage. Our approach estimates the targeted materials' local support before performing multiple material-specific reconstructions that prevent much of the misclassification traditionally associated with transitional regions and transfer function (TF) design. With respect to previously published methods our approach offers a number of improvements and advantages. For one, it does not rely on TFs acting on derivative expressions, therefore it is less sensitive to noisy data and the classification of a single material does not depend on specialized TF widgets or specifying regions in a multidimensional TF. Additionally, improved classification is attained without increasing TF dimensionality, which promotes scalability to multivariate data. These aspects are also key in maintaining low interaction complexity. The results are simple-to-achieve visualizations that better comply with the user's understanding of discrete features within the studied object.</description><subject>Boundary conditions</subject><subject>Classification</subject><subject>Data modeling</subject><subject>Data visualization</subject><subject>Image classification</subject><subject>Image reconstruction</subject><subject>Probabilistic logic</subject><subject>Rendering (computer graphics)</subject><issn>1077-2626</issn><issn>1941-0506</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEQhoMofv8AEWTBi5et-c7mWKtWoSBo7TVkN7Oyst3UpIv4703Z2oOnDOSZd2YehC4IHhGC9e18MZmOKCZ8RBmXTJA9dEw0JzkWWO6nGiuVU0nlETqJ8RMnkhf6EB3RBEstimM0uvN952z4ycbfNkD2CpXv4jr01brxXebr7K2yrQ3ZYwOti2fooLZthPPte4reHx_mk6d89jJ9noxnecUKtc4dSEE1Bq2V5K4SjFFwtna4dhJK7WhRMCUppqKmDqwmZVUoQjhWBeea1uwU5UNu_IZVX5pVaJZpSeNtY-6bxdj48GHapjfJA6Uq8TcDvwr-q4e4NssmVtC2tgPfR0NSuuCYsg16_Q_99H3o0jWGSCU1F1rRRJGBqoKPMUC9W4HgzVBtNvLNRr7Zyk89V9vkvlyC23X82U7A5QA0ALD7loWSmAn2C0Sghcc</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Lindholm, Stefan</creator><creator>Jonsson, Daniel</creator><creator>Hansen, Charles</creator><creator>Ynnerman, Anders</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG8</scope></search><sort><creationdate>20141201</creationdate><title>Boundary Aware Reconstruction of Scalar Fields</title><author>Lindholm, Stefan ; Jonsson, Daniel ; Hansen, Charles ; Ynnerman, Anders</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-de65290e99764dc5332edafd0fd6eb9d2883762025f2dea91bc871140784492f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Boundary conditions</topic><topic>Classification</topic><topic>Data modeling</topic><topic>Data visualization</topic><topic>Image classification</topic><topic>Image reconstruction</topic><topic>Probabilistic logic</topic><topic>Rendering (computer graphics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lindholm, Stefan</creatorcontrib><creatorcontrib>Jonsson, Daniel</creatorcontrib><creatorcontrib>Hansen, Charles</creatorcontrib><creatorcontrib>Ynnerman, Anders</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Linköpings universitet</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lindholm, Stefan</au><au>Jonsson, Daniel</au><au>Hansen, Charles</au><au>Ynnerman, Anders</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boundary Aware Reconstruction of Scalar Fields</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2014-12-01</date><risdate>2014</risdate><volume>20</volume><issue>12</issue><spage>2447</spage><epage>2455</epage><pages>2447-2455</pages><issn>1077-2626</issn><issn>1941-0506</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>In visualization, the combined role of data reconstruction and its classification plays a crucial role. In this paper we propose a novel approach that improves classification of different materials and their boundaries by combining information from the classifiers at the reconstruction stage. Our approach estimates the targeted materials' local support before performing multiple material-specific reconstructions that prevent much of the misclassification traditionally associated with transitional regions and transfer function (TF) design. With respect to previously published methods our approach offers a number of improvements and advantages. For one, it does not rely on TFs acting on derivative expressions, therefore it is less sensitive to noisy data and the classification of a single material does not depend on specialized TF widgets or specifying regions in a multidimensional TF. Additionally, improved classification is attained without increasing TF dimensionality, which promotes scalability to multivariate data. These aspects are also key in maintaining low interaction complexity. The results are simple-to-achieve visualizations that better comply with the user's understanding of discrete features within the studied object.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>26356958</pmid><doi>10.1109/TVCG.2014.2346351</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1077-2626
ispartof IEEE transactions on visualization and computer graphics, 2014-12, Vol.20 (12), p.2447-2455
issn 1077-2626
1941-0506
1941-0506
language eng
recordid cdi_proquest_journals_1676945972
source IEEE Xplore (Online service)
subjects Boundary conditions
Classification
Data modeling
Data visualization
Image classification
Image reconstruction
Probabilistic logic
Rendering (computer graphics)
title Boundary Aware Reconstruction of Scalar Fields
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A53%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boundary%20Aware%20Reconstruction%20of%20Scalar%20Fields&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Lindholm,%20Stefan&rft.date=2014-12-01&rft.volume=20&rft.issue=12&rft.spage=2447&rft.epage=2455&rft.pages=2447-2455&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2014.2346351&rft_dat=%3Cproquest_ieee_%3E1711540237%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c387t-de65290e99764dc5332edafd0fd6eb9d2883762025f2dea91bc871140784492f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1676945972&rft_id=info:pmid/26356958&rft_ieee_id=6876035&rfr_iscdi=true