Loading…
Boundary Aware Reconstruction of Scalar Fields
In visualization, the combined role of data reconstruction and its classification plays a crucial role. In this paper we propose a novel approach that improves classification of different materials and their boundaries by combining information from the classifiers at the reconstruction stage. Our ap...
Saved in:
Published in: | IEEE transactions on visualization and computer graphics 2014-12, Vol.20 (12), p.2447-2455 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c387t-de65290e99764dc5332edafd0fd6eb9d2883762025f2dea91bc871140784492f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c387t-de65290e99764dc5332edafd0fd6eb9d2883762025f2dea91bc871140784492f3 |
container_end_page | 2455 |
container_issue | 12 |
container_start_page | 2447 |
container_title | IEEE transactions on visualization and computer graphics |
container_volume | 20 |
creator | Lindholm, Stefan Jonsson, Daniel Hansen, Charles Ynnerman, Anders |
description | In visualization, the combined role of data reconstruction and its classification plays a crucial role. In this paper we propose a novel approach that improves classification of different materials and their boundaries by combining information from the classifiers at the reconstruction stage. Our approach estimates the targeted materials' local support before performing multiple material-specific reconstructions that prevent much of the misclassification traditionally associated with transitional regions and transfer function (TF) design. With respect to previously published methods our approach offers a number of improvements and advantages. For one, it does not rely on TFs acting on derivative expressions, therefore it is less sensitive to noisy data and the classification of a single material does not depend on specialized TF widgets or specifying regions in a multidimensional TF. Additionally, improved classification is attained without increasing TF dimensionality, which promotes scalability to multivariate data. These aspects are also key in maintaining low interaction complexity. The results are simple-to-achieve visualizations that better comply with the user's understanding of discrete features within the studied object. |
doi_str_mv | 10.1109/TVCG.2014.2346351 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_1676945972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6876035</ieee_id><sourcerecordid>1711540237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-de65290e99764dc5332edafd0fd6eb9d2883762025f2dea91bc871140784492f3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMofv8AEWTBi5et-c7mWKtWoSBo7TVkN7Oyst3UpIv4703Z2oOnDOSZd2YehC4IHhGC9e18MZmOKCZ8RBmXTJA9dEw0JzkWWO6nGiuVU0nlETqJ8RMnkhf6EB3RBEstimM0uvN952z4ycbfNkD2CpXv4jr01brxXebr7K2yrQ3ZYwOti2fooLZthPPte4reHx_mk6d89jJ9noxnecUKtc4dSEE1Bq2V5K4SjFFwtna4dhJK7WhRMCUppqKmDqwmZVUoQjhWBeea1uwU5UNu_IZVX5pVaJZpSeNtY-6bxdj48GHapjfJA6Uq8TcDvwr-q4e4NssmVtC2tgPfR0NSuuCYsg16_Q_99H3o0jWGSCU1F1rRRJGBqoKPMUC9W4HgzVBtNvLNRr7Zyk89V9vkvlyC23X82U7A5QA0ALD7loWSmAn2C0Sghcc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1676945972</pqid></control><display><type>article</type><title>Boundary Aware Reconstruction of Scalar Fields</title><source>IEEE Xplore (Online service)</source><creator>Lindholm, Stefan ; Jonsson, Daniel ; Hansen, Charles ; Ynnerman, Anders</creator><creatorcontrib>Lindholm, Stefan ; Jonsson, Daniel ; Hansen, Charles ; Ynnerman, Anders</creatorcontrib><description>In visualization, the combined role of data reconstruction and its classification plays a crucial role. In this paper we propose a novel approach that improves classification of different materials and their boundaries by combining information from the classifiers at the reconstruction stage. Our approach estimates the targeted materials' local support before performing multiple material-specific reconstructions that prevent much of the misclassification traditionally associated with transitional regions and transfer function (TF) design. With respect to previously published methods our approach offers a number of improvements and advantages. For one, it does not rely on TFs acting on derivative expressions, therefore it is less sensitive to noisy data and the classification of a single material does not depend on specialized TF widgets or specifying regions in a multidimensional TF. Additionally, improved classification is attained without increasing TF dimensionality, which promotes scalability to multivariate data. These aspects are also key in maintaining low interaction complexity. The results are simple-to-achieve visualizations that better comply with the user's understanding of discrete features within the studied object.</description><identifier>ISSN: 1077-2626</identifier><identifier>ISSN: 1941-0506</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2014.2346351</identifier><identifier>PMID: 26356958</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Boundary conditions ; Classification ; Data modeling ; Data visualization ; Image classification ; Image reconstruction ; Probabilistic logic ; Rendering (computer graphics)</subject><ispartof>IEEE transactions on visualization and computer graphics, 2014-12, Vol.20 (12), p.2447-2455</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-de65290e99764dc5332edafd0fd6eb9d2883762025f2dea91bc871140784492f3</citedby><cites>FETCH-LOGICAL-c387t-de65290e99764dc5332edafd0fd6eb9d2883762025f2dea91bc871140784492f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6876035$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26356958$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-110227$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Lindholm, Stefan</creatorcontrib><creatorcontrib>Jonsson, Daniel</creatorcontrib><creatorcontrib>Hansen, Charles</creatorcontrib><creatorcontrib>Ynnerman, Anders</creatorcontrib><title>Boundary Aware Reconstruction of Scalar Fields</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>In visualization, the combined role of data reconstruction and its classification plays a crucial role. In this paper we propose a novel approach that improves classification of different materials and their boundaries by combining information from the classifiers at the reconstruction stage. Our approach estimates the targeted materials' local support before performing multiple material-specific reconstructions that prevent much of the misclassification traditionally associated with transitional regions and transfer function (TF) design. With respect to previously published methods our approach offers a number of improvements and advantages. For one, it does not rely on TFs acting on derivative expressions, therefore it is less sensitive to noisy data and the classification of a single material does not depend on specialized TF widgets or specifying regions in a multidimensional TF. Additionally, improved classification is attained without increasing TF dimensionality, which promotes scalability to multivariate data. These aspects are also key in maintaining low interaction complexity. The results are simple-to-achieve visualizations that better comply with the user's understanding of discrete features within the studied object.</description><subject>Boundary conditions</subject><subject>Classification</subject><subject>Data modeling</subject><subject>Data visualization</subject><subject>Image classification</subject><subject>Image reconstruction</subject><subject>Probabilistic logic</subject><subject>Rendering (computer graphics)</subject><issn>1077-2626</issn><issn>1941-0506</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEQhoMofv8AEWTBi5et-c7mWKtWoSBo7TVkN7Oyst3UpIv4703Z2oOnDOSZd2YehC4IHhGC9e18MZmOKCZ8RBmXTJA9dEw0JzkWWO6nGiuVU0nlETqJ8RMnkhf6EB3RBEstimM0uvN952z4ycbfNkD2CpXv4jr01brxXebr7K2yrQ3ZYwOti2fooLZthPPte4reHx_mk6d89jJ9noxnecUKtc4dSEE1Bq2V5K4SjFFwtna4dhJK7WhRMCUppqKmDqwmZVUoQjhWBeea1uwU5UNu_IZVX5pVaJZpSeNtY-6bxdj48GHapjfJA6Uq8TcDvwr-q4e4NssmVtC2tgPfR0NSuuCYsg16_Q_99H3o0jWGSCU1F1rRRJGBqoKPMUC9W4HgzVBtNvLNRr7Zyk89V9vkvlyC23X82U7A5QA0ALD7loWSmAn2C0Sghcc</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Lindholm, Stefan</creator><creator>Jonsson, Daniel</creator><creator>Hansen, Charles</creator><creator>Ynnerman, Anders</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG8</scope></search><sort><creationdate>20141201</creationdate><title>Boundary Aware Reconstruction of Scalar Fields</title><author>Lindholm, Stefan ; Jonsson, Daniel ; Hansen, Charles ; Ynnerman, Anders</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-de65290e99764dc5332edafd0fd6eb9d2883762025f2dea91bc871140784492f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Boundary conditions</topic><topic>Classification</topic><topic>Data modeling</topic><topic>Data visualization</topic><topic>Image classification</topic><topic>Image reconstruction</topic><topic>Probabilistic logic</topic><topic>Rendering (computer graphics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lindholm, Stefan</creatorcontrib><creatorcontrib>Jonsson, Daniel</creatorcontrib><creatorcontrib>Hansen, Charles</creatorcontrib><creatorcontrib>Ynnerman, Anders</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Linköpings universitet</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lindholm, Stefan</au><au>Jonsson, Daniel</au><au>Hansen, Charles</au><au>Ynnerman, Anders</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boundary Aware Reconstruction of Scalar Fields</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2014-12-01</date><risdate>2014</risdate><volume>20</volume><issue>12</issue><spage>2447</spage><epage>2455</epage><pages>2447-2455</pages><issn>1077-2626</issn><issn>1941-0506</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>In visualization, the combined role of data reconstruction and its classification plays a crucial role. In this paper we propose a novel approach that improves classification of different materials and their boundaries by combining information from the classifiers at the reconstruction stage. Our approach estimates the targeted materials' local support before performing multiple material-specific reconstructions that prevent much of the misclassification traditionally associated with transitional regions and transfer function (TF) design. With respect to previously published methods our approach offers a number of improvements and advantages. For one, it does not rely on TFs acting on derivative expressions, therefore it is less sensitive to noisy data and the classification of a single material does not depend on specialized TF widgets or specifying regions in a multidimensional TF. Additionally, improved classification is attained without increasing TF dimensionality, which promotes scalability to multivariate data. These aspects are also key in maintaining low interaction complexity. The results are simple-to-achieve visualizations that better comply with the user's understanding of discrete features within the studied object.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>26356958</pmid><doi>10.1109/TVCG.2014.2346351</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1077-2626 |
ispartof | IEEE transactions on visualization and computer graphics, 2014-12, Vol.20 (12), p.2447-2455 |
issn | 1077-2626 1941-0506 1941-0506 |
language | eng |
recordid | cdi_proquest_journals_1676945972 |
source | IEEE Xplore (Online service) |
subjects | Boundary conditions Classification Data modeling Data visualization Image classification Image reconstruction Probabilistic logic Rendering (computer graphics) |
title | Boundary Aware Reconstruction of Scalar Fields |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A53%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boundary%20Aware%20Reconstruction%20of%20Scalar%20Fields&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Lindholm,%20Stefan&rft.date=2014-12-01&rft.volume=20&rft.issue=12&rft.spage=2447&rft.epage=2455&rft.pages=2447-2455&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2014.2346351&rft_dat=%3Cproquest_ieee_%3E1711540237%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c387t-de65290e99764dc5332edafd0fd6eb9d2883762025f2dea91bc871140784492f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1676945972&rft_id=info:pmid/26356958&rft_ieee_id=6876035&rfr_iscdi=true |