Loading…

On Sampling Strategies in Bayesian Variable Selection Problems With Large Model Spaces

One important aspect of Bayesian model selection is how to deal with huge model spaces, since the exhaustive enumeration of all the models entertained is not feasible and inferences have to be based on the very small proportion of models visited. This is the case for the variable selection problem w...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Statistical Association 2013-03, Vol.108 (501), p.340-352
Main Authors: García-donato, G, Martínez-beneito, M. A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c447t-3574a0fa5aaca721939d5a8b9c23f5bfe42180a4051bfab62af96f7f8e193c03
cites cdi_FETCH-LOGICAL-c447t-3574a0fa5aaca721939d5a8b9c23f5bfe42180a4051bfab62af96f7f8e193c03
container_end_page 352
container_issue 501
container_start_page 340
container_title Journal of the American Statistical Association
container_volume 108
creator García-donato, G
Martínez-beneito, M. A
description One important aspect of Bayesian model selection is how to deal with huge model spaces, since the exhaustive enumeration of all the models entertained is not feasible and inferences have to be based on the very small proportion of models visited. This is the case for the variable selection problem with a moderately large number of possible explanatory variables considered in this article. We review some of the strategies proposed in the literature, from a theoretical point of view using arguments of sampling theory and in practical terms using several examples with a known answer. All our results seem to indicate that sampling methods with frequency-based estimators outperform searching methods with renormalized estimators. Supplementary materials for this article are available online.
doi_str_mv 10.1080/01621459.2012.742443
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1679412230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23427533</jstor_id><sourcerecordid>23427533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-3574a0fa5aaca721939d5a8b9c23f5bfe42180a4051bfab62af96f7f8e193c03</originalsourceid><addsrcrecordid>eNqFkV1rFDEUhoeiYK3-A4uB3nizaz4nmatSi1-wUmFq7V04k03WLJlkTWaR_fdmmSrSG8_NCTnP--bwpmleEbwkWOG3mLSUcNEtKSZ0KTnlnJ00p0QwuaCS3z_55_yseV7KFteSSp02dzcR9TDugo8b1E8ZJrvxtiAf0Ts42OIhojvIHoZgUW-DNZNPEX3NqV6MBX330w-0gryx6Eta24D6HRhbXjRPHYRiXz70s-b2w_vb60-L1c3Hz9dXq4XhXE4LJiQH7EAAGJCUdKxbC1BDZyhzYnCWU6IwcCzI4GBoKbiuddIpW1GD2VnzZrbd5fRzb8ukR1-MDQGiTfuiCSeK1FJtRS8eodu0z7Eup0krO04oZUdDPlMmp1KydXqX_Qj5oAnWx6z1n6z1MWs9Z11l57NsW6aU_2oo41QKdpxfznMfXcoj_Eo5rPUEh5CyyxCNL5r954XXs4ODpGGTq-BbX4G2fqQSXFL2G7tFlx4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1679412230</pqid></control><display><type>article</type><title>On Sampling Strategies in Bayesian Variable Selection Problems With Large Model Spaces</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Taylor and Francis Science and Technology Collection</source><source>JSTOR</source><creator>García-donato, G ; Martínez-beneito, M. A</creator><creatorcontrib>García-donato, G ; Martínez-beneito, M. A</creatorcontrib><description>One important aspect of Bayesian model selection is how to deal with huge model spaces, since the exhaustive enumeration of all the models entertained is not feasible and inferences have to be based on the very small proportion of models visited. This is the case for the variable selection problem with a moderately large number of possible explanatory variables considered in this article. We review some of the strategies proposed in the literature, from a theoretical point of view using arguments of sampling theory and in practical terms using several examples with a known answer. All our results seem to indicate that sampling methods with frequency-based estimators outperform searching methods with renormalized estimators. Supplementary materials for this article are available online.</description><identifier>ISSN: 1537-274X</identifier><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1080/01621459.2012.742443</identifier><identifier>CODEN: JSTNAL</identifier><language>eng</language><publisher>Alexandria: Taylor &amp; Francis Group</publisher><subject>Bayesian analysis ; Bayesian method ; Bayesian model selection ; Bayesian theory ; data analysis ; equations ; Estimating techniques ; Estimation ; g-priors ; Internet ; Review Article ; Sampling ; Sampling techniques ; Searching strategies ; Statistical analysis ; Statistics ; Strategic planning ; Variables</subject><ispartof>Journal of the American Statistical Association, 2013-03, Vol.108 (501), p.340-352</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2013</rights><rights>2013 American Statistical Association</rights><rights>Copyright Taylor &amp; Francis Ltd. Mar 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-3574a0fa5aaca721939d5a8b9c23f5bfe42180a4051bfab62af96f7f8e193c03</citedby><cites>FETCH-LOGICAL-c447t-3574a0fa5aaca721939d5a8b9c23f5bfe42180a4051bfab62af96f7f8e193c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23427533$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23427533$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,33200,33201,58213,58446</link.rule.ids></links><search><creatorcontrib>García-donato, G</creatorcontrib><creatorcontrib>Martínez-beneito, M. A</creatorcontrib><title>On Sampling Strategies in Bayesian Variable Selection Problems With Large Model Spaces</title><title>Journal of the American Statistical Association</title><description>One important aspect of Bayesian model selection is how to deal with huge model spaces, since the exhaustive enumeration of all the models entertained is not feasible and inferences have to be based on the very small proportion of models visited. This is the case for the variable selection problem with a moderately large number of possible explanatory variables considered in this article. We review some of the strategies proposed in the literature, from a theoretical point of view using arguments of sampling theory and in practical terms using several examples with a known answer. All our results seem to indicate that sampling methods with frequency-based estimators outperform searching methods with renormalized estimators. Supplementary materials for this article are available online.</description><subject>Bayesian analysis</subject><subject>Bayesian method</subject><subject>Bayesian model selection</subject><subject>Bayesian theory</subject><subject>data analysis</subject><subject>equations</subject><subject>Estimating techniques</subject><subject>Estimation</subject><subject>g-priors</subject><subject>Internet</subject><subject>Review Article</subject><subject>Sampling</subject><subject>Sampling techniques</subject><subject>Searching strategies</subject><subject>Statistical analysis</subject><subject>Statistics</subject><subject>Strategic planning</subject><subject>Variables</subject><issn>1537-274X</issn><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqFkV1rFDEUhoeiYK3-A4uB3nizaz4nmatSi1-wUmFq7V04k03WLJlkTWaR_fdmmSrSG8_NCTnP--bwpmleEbwkWOG3mLSUcNEtKSZ0KTnlnJ00p0QwuaCS3z_55_yseV7KFteSSp02dzcR9TDugo8b1E8ZJrvxtiAf0Ts42OIhojvIHoZgUW-DNZNPEX3NqV6MBX330w-0gryx6Eta24D6HRhbXjRPHYRiXz70s-b2w_vb60-L1c3Hz9dXq4XhXE4LJiQH7EAAGJCUdKxbC1BDZyhzYnCWU6IwcCzI4GBoKbiuddIpW1GD2VnzZrbd5fRzb8ukR1-MDQGiTfuiCSeK1FJtRS8eodu0z7Eup0krO04oZUdDPlMmp1KydXqX_Qj5oAnWx6z1n6z1MWs9Z11l57NsW6aU_2oo41QKdpxfznMfXcoj_Eo5rPUEh5CyyxCNL5r954XXs4ODpGGTq-BbX4G2fqQSXFL2G7tFlx4</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>García-donato, G</creator><creator>Martínez-beneito, M. A</creator><general>Taylor &amp; Francis Group</general><general>Taylor &amp; Francis Ltd</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>K9.</scope></search><sort><creationdate>20130301</creationdate><title>On Sampling Strategies in Bayesian Variable Selection Problems With Large Model Spaces</title><author>García-donato, G ; Martínez-beneito, M. A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-3574a0fa5aaca721939d5a8b9c23f5bfe42180a4051bfab62af96f7f8e193c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Bayesian analysis</topic><topic>Bayesian method</topic><topic>Bayesian model selection</topic><topic>Bayesian theory</topic><topic>data analysis</topic><topic>equations</topic><topic>Estimating techniques</topic><topic>Estimation</topic><topic>g-priors</topic><topic>Internet</topic><topic>Review Article</topic><topic>Sampling</topic><topic>Sampling techniques</topic><topic>Searching strategies</topic><topic>Statistical analysis</topic><topic>Statistics</topic><topic>Strategic planning</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>García-donato, G</creatorcontrib><creatorcontrib>Martínez-beneito, M. A</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>García-donato, G</au><au>Martínez-beneito, M. A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Sampling Strategies in Bayesian Variable Selection Problems With Large Model Spaces</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>2013-03-01</date><risdate>2013</risdate><volume>108</volume><issue>501</issue><spage>340</spage><epage>352</epage><pages>340-352</pages><issn>1537-274X</issn><issn>0162-1459</issn><eissn>1537-274X</eissn><coden>JSTNAL</coden><abstract>One important aspect of Bayesian model selection is how to deal with huge model spaces, since the exhaustive enumeration of all the models entertained is not feasible and inferences have to be based on the very small proportion of models visited. This is the case for the variable selection problem with a moderately large number of possible explanatory variables considered in this article. We review some of the strategies proposed in the literature, from a theoretical point of view using arguments of sampling theory and in practical terms using several examples with a known answer. All our results seem to indicate that sampling methods with frequency-based estimators outperform searching methods with renormalized estimators. Supplementary materials for this article are available online.</abstract><cop>Alexandria</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/01621459.2012.742443</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1537-274X
ispartof Journal of the American Statistical Association, 2013-03, Vol.108 (501), p.340-352
issn 1537-274X
0162-1459
1537-274X
language eng
recordid cdi_proquest_journals_1679412230
source International Bibliography of the Social Sciences (IBSS); Taylor and Francis Science and Technology Collection; JSTOR
subjects Bayesian analysis
Bayesian method
Bayesian model selection
Bayesian theory
data analysis
equations
Estimating techniques
Estimation
g-priors
Internet
Review Article
Sampling
Sampling techniques
Searching strategies
Statistical analysis
Statistics
Strategic planning
Variables
title On Sampling Strategies in Bayesian Variable Selection Problems With Large Model Spaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A21%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Sampling%20Strategies%20in%20Bayesian%20Variable%20Selection%20Problems%20With%20Large%20Model%20Spaces&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Garc%C3%ADa-donato,%20G&rft.date=2013-03-01&rft.volume=108&rft.issue=501&rft.spage=340&rft.epage=352&rft.pages=340-352&rft.issn=1537-274X&rft.eissn=1537-274X&rft.coden=JSTNAL&rft_id=info:doi/10.1080/01621459.2012.742443&rft_dat=%3Cjstor_proqu%3E23427533%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c447t-3574a0fa5aaca721939d5a8b9c23f5bfe42180a4051bfab62af96f7f8e193c03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1679412230&rft_id=info:pmid/&rft_jstor_id=23427533&rfr_iscdi=true