Loading…
On Sampling Strategies in Bayesian Variable Selection Problems With Large Model Spaces
One important aspect of Bayesian model selection is how to deal with huge model spaces, since the exhaustive enumeration of all the models entertained is not feasible and inferences have to be based on the very small proportion of models visited. This is the case for the variable selection problem w...
Saved in:
Published in: | Journal of the American Statistical Association 2013-03, Vol.108 (501), p.340-352 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c447t-3574a0fa5aaca721939d5a8b9c23f5bfe42180a4051bfab62af96f7f8e193c03 |
---|---|
cites | cdi_FETCH-LOGICAL-c447t-3574a0fa5aaca721939d5a8b9c23f5bfe42180a4051bfab62af96f7f8e193c03 |
container_end_page | 352 |
container_issue | 501 |
container_start_page | 340 |
container_title | Journal of the American Statistical Association |
container_volume | 108 |
creator | García-donato, G Martínez-beneito, M. A |
description | One important aspect of Bayesian model selection is how to deal with huge model spaces, since the exhaustive enumeration of all the models entertained is not feasible and inferences have to be based on the very small proportion of models visited. This is the case for the variable selection problem with a moderately large number of possible explanatory variables considered in this article. We review some of the strategies proposed in the literature, from a theoretical point of view using arguments of sampling theory and in practical terms using several examples with a known answer. All our results seem to indicate that sampling methods with frequency-based estimators outperform searching methods with renormalized estimators. Supplementary materials for this article are available online. |
doi_str_mv | 10.1080/01621459.2012.742443 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1679412230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23427533</jstor_id><sourcerecordid>23427533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-3574a0fa5aaca721939d5a8b9c23f5bfe42180a4051bfab62af96f7f8e193c03</originalsourceid><addsrcrecordid>eNqFkV1rFDEUhoeiYK3-A4uB3nizaz4nmatSi1-wUmFq7V04k03WLJlkTWaR_fdmmSrSG8_NCTnP--bwpmleEbwkWOG3mLSUcNEtKSZ0KTnlnJ00p0QwuaCS3z_55_yseV7KFteSSp02dzcR9TDugo8b1E8ZJrvxtiAf0Ts42OIhojvIHoZgUW-DNZNPEX3NqV6MBX330w-0gryx6Eta24D6HRhbXjRPHYRiXz70s-b2w_vb60-L1c3Hz9dXq4XhXE4LJiQH7EAAGJCUdKxbC1BDZyhzYnCWU6IwcCzI4GBoKbiuddIpW1GD2VnzZrbd5fRzb8ukR1-MDQGiTfuiCSeK1FJtRS8eodu0z7Eup0krO04oZUdDPlMmp1KydXqX_Qj5oAnWx6z1n6z1MWs9Z11l57NsW6aU_2oo41QKdpxfznMfXcoj_Eo5rPUEh5CyyxCNL5r954XXs4ODpGGTq-BbX4G2fqQSXFL2G7tFlx4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1679412230</pqid></control><display><type>article</type><title>On Sampling Strategies in Bayesian Variable Selection Problems With Large Model Spaces</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Taylor and Francis Science and Technology Collection</source><source>JSTOR</source><creator>García-donato, G ; Martínez-beneito, M. A</creator><creatorcontrib>García-donato, G ; Martínez-beneito, M. A</creatorcontrib><description>One important aspect of Bayesian model selection is how to deal with huge model spaces, since the exhaustive enumeration of all the models entertained is not feasible and inferences have to be based on the very small proportion of models visited. This is the case for the variable selection problem with a moderately large number of possible explanatory variables considered in this article. We review some of the strategies proposed in the literature, from a theoretical point of view using arguments of sampling theory and in practical terms using several examples with a known answer. All our results seem to indicate that sampling methods with frequency-based estimators outperform searching methods with renormalized estimators. Supplementary materials for this article are available online.</description><identifier>ISSN: 1537-274X</identifier><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1080/01621459.2012.742443</identifier><identifier>CODEN: JSTNAL</identifier><language>eng</language><publisher>Alexandria: Taylor & Francis Group</publisher><subject>Bayesian analysis ; Bayesian method ; Bayesian model selection ; Bayesian theory ; data analysis ; equations ; Estimating techniques ; Estimation ; g-priors ; Internet ; Review Article ; Sampling ; Sampling techniques ; Searching strategies ; Statistical analysis ; Statistics ; Strategic planning ; Variables</subject><ispartof>Journal of the American Statistical Association, 2013-03, Vol.108 (501), p.340-352</ispartof><rights>Copyright Taylor & Francis Group, LLC 2013</rights><rights>2013 American Statistical Association</rights><rights>Copyright Taylor & Francis Ltd. Mar 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-3574a0fa5aaca721939d5a8b9c23f5bfe42180a4051bfab62af96f7f8e193c03</citedby><cites>FETCH-LOGICAL-c447t-3574a0fa5aaca721939d5a8b9c23f5bfe42180a4051bfab62af96f7f8e193c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23427533$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23427533$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,33200,33201,58213,58446</link.rule.ids></links><search><creatorcontrib>García-donato, G</creatorcontrib><creatorcontrib>Martínez-beneito, M. A</creatorcontrib><title>On Sampling Strategies in Bayesian Variable Selection Problems With Large Model Spaces</title><title>Journal of the American Statistical Association</title><description>One important aspect of Bayesian model selection is how to deal with huge model spaces, since the exhaustive enumeration of all the models entertained is not feasible and inferences have to be based on the very small proportion of models visited. This is the case for the variable selection problem with a moderately large number of possible explanatory variables considered in this article. We review some of the strategies proposed in the literature, from a theoretical point of view using arguments of sampling theory and in practical terms using several examples with a known answer. All our results seem to indicate that sampling methods with frequency-based estimators outperform searching methods with renormalized estimators. Supplementary materials for this article are available online.</description><subject>Bayesian analysis</subject><subject>Bayesian method</subject><subject>Bayesian model selection</subject><subject>Bayesian theory</subject><subject>data analysis</subject><subject>equations</subject><subject>Estimating techniques</subject><subject>Estimation</subject><subject>g-priors</subject><subject>Internet</subject><subject>Review Article</subject><subject>Sampling</subject><subject>Sampling techniques</subject><subject>Searching strategies</subject><subject>Statistical analysis</subject><subject>Statistics</subject><subject>Strategic planning</subject><subject>Variables</subject><issn>1537-274X</issn><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqFkV1rFDEUhoeiYK3-A4uB3nizaz4nmatSi1-wUmFq7V04k03WLJlkTWaR_fdmmSrSG8_NCTnP--bwpmleEbwkWOG3mLSUcNEtKSZ0KTnlnJ00p0QwuaCS3z_55_yseV7KFteSSp02dzcR9TDugo8b1E8ZJrvxtiAf0Ts42OIhojvIHoZgUW-DNZNPEX3NqV6MBX330w-0gryx6Eta24D6HRhbXjRPHYRiXz70s-b2w_vb60-L1c3Hz9dXq4XhXE4LJiQH7EAAGJCUdKxbC1BDZyhzYnCWU6IwcCzI4GBoKbiuddIpW1GD2VnzZrbd5fRzb8ukR1-MDQGiTfuiCSeK1FJtRS8eodu0z7Eup0krO04oZUdDPlMmp1KydXqX_Qj5oAnWx6z1n6z1MWs9Z11l57NsW6aU_2oo41QKdpxfznMfXcoj_Eo5rPUEh5CyyxCNL5r954XXs4ODpGGTq-BbX4G2fqQSXFL2G7tFlx4</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>García-donato, G</creator><creator>Martínez-beneito, M. A</creator><general>Taylor & Francis Group</general><general>Taylor & Francis Ltd</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>K9.</scope></search><sort><creationdate>20130301</creationdate><title>On Sampling Strategies in Bayesian Variable Selection Problems With Large Model Spaces</title><author>García-donato, G ; Martínez-beneito, M. A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-3574a0fa5aaca721939d5a8b9c23f5bfe42180a4051bfab62af96f7f8e193c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Bayesian analysis</topic><topic>Bayesian method</topic><topic>Bayesian model selection</topic><topic>Bayesian theory</topic><topic>data analysis</topic><topic>equations</topic><topic>Estimating techniques</topic><topic>Estimation</topic><topic>g-priors</topic><topic>Internet</topic><topic>Review Article</topic><topic>Sampling</topic><topic>Sampling techniques</topic><topic>Searching strategies</topic><topic>Statistical analysis</topic><topic>Statistics</topic><topic>Strategic planning</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>García-donato, G</creatorcontrib><creatorcontrib>Martínez-beneito, M. A</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>García-donato, G</au><au>Martínez-beneito, M. A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Sampling Strategies in Bayesian Variable Selection Problems With Large Model Spaces</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>2013-03-01</date><risdate>2013</risdate><volume>108</volume><issue>501</issue><spage>340</spage><epage>352</epage><pages>340-352</pages><issn>1537-274X</issn><issn>0162-1459</issn><eissn>1537-274X</eissn><coden>JSTNAL</coden><abstract>One important aspect of Bayesian model selection is how to deal with huge model spaces, since the exhaustive enumeration of all the models entertained is not feasible and inferences have to be based on the very small proportion of models visited. This is the case for the variable selection problem with a moderately large number of possible explanatory variables considered in this article. We review some of the strategies proposed in the literature, from a theoretical point of view using arguments of sampling theory and in practical terms using several examples with a known answer. All our results seem to indicate that sampling methods with frequency-based estimators outperform searching methods with renormalized estimators. Supplementary materials for this article are available online.</abstract><cop>Alexandria</cop><pub>Taylor & Francis Group</pub><doi>10.1080/01621459.2012.742443</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1537-274X |
ispartof | Journal of the American Statistical Association, 2013-03, Vol.108 (501), p.340-352 |
issn | 1537-274X 0162-1459 1537-274X |
language | eng |
recordid | cdi_proquest_journals_1679412230 |
source | International Bibliography of the Social Sciences (IBSS); Taylor and Francis Science and Technology Collection; JSTOR |
subjects | Bayesian analysis Bayesian method Bayesian model selection Bayesian theory data analysis equations Estimating techniques Estimation g-priors Internet Review Article Sampling Sampling techniques Searching strategies Statistical analysis Statistics Strategic planning Variables |
title | On Sampling Strategies in Bayesian Variable Selection Problems With Large Model Spaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A21%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Sampling%20Strategies%20in%20Bayesian%20Variable%20Selection%20Problems%20With%20Large%20Model%20Spaces&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Garc%C3%ADa-donato,%20G&rft.date=2013-03-01&rft.volume=108&rft.issue=501&rft.spage=340&rft.epage=352&rft.pages=340-352&rft.issn=1537-274X&rft.eissn=1537-274X&rft.coden=JSTNAL&rft_id=info:doi/10.1080/01621459.2012.742443&rft_dat=%3Cjstor_proqu%3E23427533%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c447t-3574a0fa5aaca721939d5a8b9c23f5bfe42180a4051bfab62af96f7f8e193c03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1679412230&rft_id=info:pmid/&rft_jstor_id=23427533&rfr_iscdi=true |