Loading…
3D printing meets computational astrophysics: deciphering the structure of [Eta] Carinae's inner colliding winds
We present the first 3D prints of output from a supercomputer simulation of a complex astrophysical system, the colliding stellar winds in the massive (...120 M...), highly eccentric (e ~ 0.9) binary star system ... Carinae. We demonstrate the methodology used to incorporate 3D interactive figures i...
Saved in:
Published in: | Monthly notices of the Royal Astronomical Society 2015-06, Vol.449 (4), p.3780 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present the first 3D prints of output from a supercomputer simulation of a complex astrophysical system, the colliding stellar winds in the massive (...120 M...), highly eccentric (e ~ 0.9) binary star system ... Carinae. We demonstrate the methodology used to incorporate 3D interactive figures into a PDF (Portable Document Format) journal publication and the benefits of using 3D visualization and 3D printing as tools to analyse data from multidimensional numerical simulations. Using a consumer-grade 3D printer (MakerBot Replicator 2X), we successfully printed 3D smoothed particle hydrodynamics simulations of ... Carinae's inner (r ~ 110 au) wind-wind collision interface at multiple orbital phases. The 3D prints and visualizations reveal important, previously unknown 'finger-like' structures at orbital phases shortly after periastron (... ~ 1.045) that protrude radially outwards from the spiral wind-wind collision region. We speculate that these fingers are related to instabilities (e.g. thin-shell, Rayleigh-Taylor) that arise at the interface between the radiatively cooled layer of dense post-shock primary-star wind and the fast (3000 km s-1), adiabatic post-shock companion-star wind. The success of our work and easy identification of previously unrecognized physical features highlight the important role 3D printing and interactive graphics can play in the visualization and understanding of complex 3D time-dependent numerical simulations of astrophysical phenomena. (ProQuest: ... denotes formulae/symbols omitted.) |
---|---|
ISSN: | 0035-8711 1365-2966 |