Loading…

On massive sets for subordinated random walks

We study massive (reccurent) sets with respect to a certain random walk Sα defined on the integer lattice Zd, d=1,2. Our random walk Sα is obtained from the simple random walk S on Zd by the procedure of discrete subordination. Sα can be regarded as a discrete space and time counterpart of the symme...

Full description

Saved in:
Bibliographic Details
Published in:Mathematische Nachrichten 2015-06, Vol.288 (8-9), p.841-853
Main Authors: Bendikov, Alexander, Cygan, Wojciech
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3557-dd4231fc535b49870c19d0017683bd2845ccae35b220b8ff7adecfffd84c556a3
cites cdi_FETCH-LOGICAL-c3557-dd4231fc535b49870c19d0017683bd2845ccae35b220b8ff7adecfffd84c556a3
container_end_page 853
container_issue 8-9
container_start_page 841
container_title Mathematische Nachrichten
container_volume 288
creator Bendikov, Alexander
Cygan, Wojciech
description We study massive (reccurent) sets with respect to a certain random walk Sα defined on the integer lattice Zd, d=1,2. Our random walk Sα is obtained from the simple random walk S on Zd by the procedure of discrete subordination. Sα can be regarded as a discrete space and time counterpart of the symmetric α‐stable Lévy process in Rd. In the case d=1 we show that some remarkable proper subsets of Z , e.g. the set P of primes, are massive whereas some proper subsets of P such as the Leitmann primes Ph are massive/non‐massive depending on the function h. Our results can be regarded as an extension of the results of McKean (1961) about massiveness of the set of primes for the simple random walk in Z3. In the case d=2 we study massiveness of thorns and their proper subsets. The case d>2 is presented in the recent paper Bendikov and Cygan .
doi_str_mv 10.1002/mana.201400037
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1685017671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3702119181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3557-dd4231fc535b49870c19d0017683bd2845ccae35b220b8ff7adecfffd84c556a3</originalsourceid><addsrcrecordid>eNqFkEtLw0AUhQdRsFa3rgOup84j88iyFK1ibBGUuhsm84C0TVJn0tb-e1MixZ2ruzjfdy4cAG4xGmGEyH2laz0iCKcIISrOwAAzQiDhmJ-DQQcwyGT6eQmuYlx2SJYJPgBwXieVjrHcuSS6Nia-CUncFk2wZa1bZ5Oga9tUyV6vV_EaXHi9ju7m9w7Bx-PD--QJ5vPp82ScQ0MZE9DalFDsDaOsSDMpkMGZRQgLLmlhiUyZMdp1ISGokN4LbZ3x3luZGsa4pkNw1_duQvO1dbFVy2Yb6u6lwlyyY5PAHTXqKROaGIPzahPKSoeDwkgdJ1HHSdRpkk7IemFfrt3hH1q9jmfjvy7s3TK27vvk6rBSXFDB1GI2VW8vbMGpzBWmP4dEc1U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1685017671</pqid></control><display><type>article</type><title>On massive sets for subordinated random walks</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Bendikov, Alexander ; Cygan, Wojciech</creator><creatorcontrib>Bendikov, Alexander ; Cygan, Wojciech</creatorcontrib><description>We study massive (reccurent) sets with respect to a certain random walk Sα defined on the integer lattice Zd, d=1,2. Our random walk Sα is obtained from the simple random walk S on Zd by the procedure of discrete subordination. Sα can be regarded as a discrete space and time counterpart of the symmetric α‐stable Lévy process in Rd. In the case d=1 we show that some remarkable proper subsets of Z , e.g. the set P of primes, are massive whereas some proper subsets of P such as the Leitmann primes Ph are massive/non‐massive depending on the function h. Our results can be regarded as an extension of the results of McKean (1961) about massiveness of the set of primes for the simple random walk in Z3. In the case d=2 we study massiveness of thorns and their proper subsets. The case d&gt;2 is presented in the recent paper Bendikov and Cygan .</description><identifier>ISSN: 0025-584X</identifier><identifier>EISSN: 1522-2616</identifier><identifier>DOI: 10.1002/mana.201400037</identifier><language>eng</language><publisher>Weinheim: Blackwell Publishing Ltd</publisher><subject>05C81 ; 31A15 ; 60J45 ; Capacity ; Green function ; random walk ; regular variation ; subordination</subject><ispartof>Mathematische Nachrichten, 2015-06, Vol.288 (8-9), p.841-853</ispartof><rights>2015 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2015 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3557-dd4231fc535b49870c19d0017683bd2845ccae35b220b8ff7adecfffd84c556a3</citedby><cites>FETCH-LOGICAL-c3557-dd4231fc535b49870c19d0017683bd2845ccae35b220b8ff7adecfffd84c556a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Bendikov, Alexander</creatorcontrib><creatorcontrib>Cygan, Wojciech</creatorcontrib><title>On massive sets for subordinated random walks</title><title>Mathematische Nachrichten</title><addtitle>Math. Nachr</addtitle><description>We study massive (reccurent) sets with respect to a certain random walk Sα defined on the integer lattice Zd, d=1,2. Our random walk Sα is obtained from the simple random walk S on Zd by the procedure of discrete subordination. Sα can be regarded as a discrete space and time counterpart of the symmetric α‐stable Lévy process in Rd. In the case d=1 we show that some remarkable proper subsets of Z , e.g. the set P of primes, are massive whereas some proper subsets of P such as the Leitmann primes Ph are massive/non‐massive depending on the function h. Our results can be regarded as an extension of the results of McKean (1961) about massiveness of the set of primes for the simple random walk in Z3. In the case d=2 we study massiveness of thorns and their proper subsets. The case d&gt;2 is presented in the recent paper Bendikov and Cygan .</description><subject>05C81</subject><subject>31A15</subject><subject>60J45</subject><subject>Capacity</subject><subject>Green function</subject><subject>random walk</subject><subject>regular variation</subject><subject>subordination</subject><issn>0025-584X</issn><issn>1522-2616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLw0AUhQdRsFa3rgOup84j88iyFK1ibBGUuhsm84C0TVJn0tb-e1MixZ2ruzjfdy4cAG4xGmGEyH2laz0iCKcIISrOwAAzQiDhmJ-DQQcwyGT6eQmuYlx2SJYJPgBwXieVjrHcuSS6Nia-CUncFk2wZa1bZ5Oga9tUyV6vV_EaXHi9ju7m9w7Bx-PD--QJ5vPp82ScQ0MZE9DalFDsDaOsSDMpkMGZRQgLLmlhiUyZMdp1ISGokN4LbZ3x3luZGsa4pkNw1_duQvO1dbFVy2Yb6u6lwlyyY5PAHTXqKROaGIPzahPKSoeDwkgdJ1HHSdRpkk7IemFfrt3hH1q9jmfjvy7s3TK27vvk6rBSXFDB1GI2VW8vbMGpzBWmP4dEc1U</recordid><startdate>201506</startdate><enddate>201506</enddate><creator>Bendikov, Alexander</creator><creator>Cygan, Wojciech</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201506</creationdate><title>On massive sets for subordinated random walks</title><author>Bendikov, Alexander ; Cygan, Wojciech</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3557-dd4231fc535b49870c19d0017683bd2845ccae35b220b8ff7adecfffd84c556a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>05C81</topic><topic>31A15</topic><topic>60J45</topic><topic>Capacity</topic><topic>Green function</topic><topic>random walk</topic><topic>regular variation</topic><topic>subordination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bendikov, Alexander</creatorcontrib><creatorcontrib>Cygan, Wojciech</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Mathematische Nachrichten</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bendikov, Alexander</au><au>Cygan, Wojciech</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On massive sets for subordinated random walks</atitle><jtitle>Mathematische Nachrichten</jtitle><addtitle>Math. Nachr</addtitle><date>2015-06</date><risdate>2015</risdate><volume>288</volume><issue>8-9</issue><spage>841</spage><epage>853</epage><pages>841-853</pages><issn>0025-584X</issn><eissn>1522-2616</eissn><abstract>We study massive (reccurent) sets with respect to a certain random walk Sα defined on the integer lattice Zd, d=1,2. Our random walk Sα is obtained from the simple random walk S on Zd by the procedure of discrete subordination. Sα can be regarded as a discrete space and time counterpart of the symmetric α‐stable Lévy process in Rd. In the case d=1 we show that some remarkable proper subsets of Z , e.g. the set P of primes, are massive whereas some proper subsets of P such as the Leitmann primes Ph are massive/non‐massive depending on the function h. Our results can be regarded as an extension of the results of McKean (1961) about massiveness of the set of primes for the simple random walk in Z3. In the case d=2 we study massiveness of thorns and their proper subsets. The case d&gt;2 is presented in the recent paper Bendikov and Cygan .</abstract><cop>Weinheim</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/mana.201400037</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-584X
ispartof Mathematische Nachrichten, 2015-06, Vol.288 (8-9), p.841-853
issn 0025-584X
1522-2616
language eng
recordid cdi_proquest_journals_1685017671
source Wiley-Blackwell Read & Publish Collection
subjects 05C81
31A15
60J45
Capacity
Green function
random walk
regular variation
subordination
title On massive sets for subordinated random walks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T10%3A27%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20massive%20sets%20for%20subordinated%20random%20walks&rft.jtitle=Mathematische%20Nachrichten&rft.au=Bendikov,%20Alexander&rft.date=2015-06&rft.volume=288&rft.issue=8-9&rft.spage=841&rft.epage=853&rft.pages=841-853&rft.issn=0025-584X&rft.eissn=1522-2616&rft_id=info:doi/10.1002/mana.201400037&rft_dat=%3Cproquest_cross%3E3702119181%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3557-dd4231fc535b49870c19d0017683bd2845ccae35b220b8ff7adecfffd84c556a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1685017671&rft_id=info:pmid/&rfr_iscdi=true