Loading…

Estimating the parameters of multiple chirp signals

Chirp signals occur naturally in different areas of signal processing. Recently, Kundu and Nandi (2008) considered the least squares estimators of the unknown parameters of a chirp signal model and established their consistency and asymptotic normality properties. It is observed that the dispersion...

Full description

Saved in:
Bibliographic Details
Published in:Journal of multivariate analysis 2015-07, Vol.139, p.189-206
Main Authors: Lahiri, Ananya, Kundu, Debasis, Mitra, Amit
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c372t-8276204465bdb68f087e2ef77b1e5a8af21b46599dc4626efc18ceda9320d6233
cites cdi_FETCH-LOGICAL-c372t-8276204465bdb68f087e2ef77b1e5a8af21b46599dc4626efc18ceda9320d6233
container_end_page 206
container_issue
container_start_page 189
container_title Journal of multivariate analysis
container_volume 139
creator Lahiri, Ananya
Kundu, Debasis
Mitra, Amit
description Chirp signals occur naturally in different areas of signal processing. Recently, Kundu and Nandi (2008) considered the least squares estimators of the unknown parameters of a chirp signal model and established their consistency and asymptotic normality properties. It is observed that the dispersion matrix of the asymptotic distribution of the least squares estimators is quite complicated. The aim of this paper is twofold. First, using a number theoretic result of Vinogradov (1954), we present a simplified form of the above mentioned dispersion matrix. Secondly, using the orthogonal structure of the different chirp components, we propose a step by step sequential estimation procedure of the unknown parameters of the model. Under the proposed sequential procedure, the problem of estimation of the parameters of a multiple chirp signal model reduces to solving only a two dimensional optimization problem at each step. It is observed that the estimators obtained by the proposed method are strongly consistent. Due to the complicated nature of the model, we could not establish the asymptotic distribution of the proposed sequential estimators. We perform some simulation experiments to compare the performance of the proposed and least squares estimators for small sample sizes, and for different parameter values. It is observed that the mean squared errors of the proposed estimators are very close to the corresponding mean squared errors of the least squares estimators. Two real data sets have been analyzed for illustrative purposes.
doi_str_mv 10.1016/j.jmva.2015.01.019
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1686081008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0047259X15000329</els_id><sourcerecordid>3705581881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-8276204465bdb68f087e2ef77b1e5a8af21b46599dc4626efc18ceda9320d6233</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKLguvoHPBU8t76kbT7Aiyx-wYIXBW8hTV93U7bbmmQX_PemrGdhYA5v5r15Q8gthYIC5fd90Q9HUzCgdQE0QZ2RBQVV54JV5TlZAFQiZ7X6uiRXIfQAlNaiWpDyKUQ3mOj2myxuMZuMNwNG9CEbu2w47KKbdpjZrfNTFtxmb3bhmlx0ifDmj5fk8_npY_War99f3laP69yWgsVcMsEZVBWvm7bhsgMpkGEnREOxNtJ0jDZpqFRrK844dpZKi61RJYOWs7JckrvT3smP3wcMUffjwc8JNOWSg6QAMqnYSWX9GILHTk8-feR_NAU9l6N7PZej53I00ASVTA8nE6b8R4deB-twn847jzbqdnT_2X8B-oJsoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1686081008</pqid></control><display><type>article</type><title>Estimating the parameters of multiple chirp signals</title><source>ScienceDirect Freedom Collection</source><creator>Lahiri, Ananya ; Kundu, Debasis ; Mitra, Amit</creator><creatorcontrib>Lahiri, Ananya ; Kundu, Debasis ; Mitra, Amit</creatorcontrib><description>Chirp signals occur naturally in different areas of signal processing. Recently, Kundu and Nandi (2008) considered the least squares estimators of the unknown parameters of a chirp signal model and established their consistency and asymptotic normality properties. It is observed that the dispersion matrix of the asymptotic distribution of the least squares estimators is quite complicated. The aim of this paper is twofold. First, using a number theoretic result of Vinogradov (1954), we present a simplified form of the above mentioned dispersion matrix. Secondly, using the orthogonal structure of the different chirp components, we propose a step by step sequential estimation procedure of the unknown parameters of the model. Under the proposed sequential procedure, the problem of estimation of the parameters of a multiple chirp signal model reduces to solving only a two dimensional optimization problem at each step. It is observed that the estimators obtained by the proposed method are strongly consistent. Due to the complicated nature of the model, we could not establish the asymptotic distribution of the proposed sequential estimators. We perform some simulation experiments to compare the performance of the proposed and least squares estimators for small sample sizes, and for different parameter values. It is observed that the mean squared errors of the proposed estimators are very close to the corresponding mean squared errors of the least squares estimators. Two real data sets have been analyzed for illustrative purposes.</description><identifier>ISSN: 0047-259X</identifier><identifier>EISSN: 1095-7243</identifier><identifier>DOI: 10.1016/j.jmva.2015.01.019</identifier><identifier>CODEN: JMVAAI</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Asymptotic distribution ; Asymptotic methods ; Chirp signals ; Estimating techniques ; Least squares estimators ; Linear process ; Matrix ; Number theory ; Parameter estimation ; Signal processing ; Strong consistency ; Studies</subject><ispartof>Journal of multivariate analysis, 2015-07, Vol.139, p.189-206</ispartof><rights>2015 Elsevier Inc.</rights><rights>Copyright Taylor &amp; Francis Group Jul 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-8276204465bdb68f087e2ef77b1e5a8af21b46599dc4626efc18ceda9320d6233</citedby><cites>FETCH-LOGICAL-c372t-8276204465bdb68f087e2ef77b1e5a8af21b46599dc4626efc18ceda9320d6233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lahiri, Ananya</creatorcontrib><creatorcontrib>Kundu, Debasis</creatorcontrib><creatorcontrib>Mitra, Amit</creatorcontrib><title>Estimating the parameters of multiple chirp signals</title><title>Journal of multivariate analysis</title><description>Chirp signals occur naturally in different areas of signal processing. Recently, Kundu and Nandi (2008) considered the least squares estimators of the unknown parameters of a chirp signal model and established their consistency and asymptotic normality properties. It is observed that the dispersion matrix of the asymptotic distribution of the least squares estimators is quite complicated. The aim of this paper is twofold. First, using a number theoretic result of Vinogradov (1954), we present a simplified form of the above mentioned dispersion matrix. Secondly, using the orthogonal structure of the different chirp components, we propose a step by step sequential estimation procedure of the unknown parameters of the model. Under the proposed sequential procedure, the problem of estimation of the parameters of a multiple chirp signal model reduces to solving only a two dimensional optimization problem at each step. It is observed that the estimators obtained by the proposed method are strongly consistent. Due to the complicated nature of the model, we could not establish the asymptotic distribution of the proposed sequential estimators. We perform some simulation experiments to compare the performance of the proposed and least squares estimators for small sample sizes, and for different parameter values. It is observed that the mean squared errors of the proposed estimators are very close to the corresponding mean squared errors of the least squares estimators. Two real data sets have been analyzed for illustrative purposes.</description><subject>Asymptotic distribution</subject><subject>Asymptotic methods</subject><subject>Chirp signals</subject><subject>Estimating techniques</subject><subject>Least squares estimators</subject><subject>Linear process</subject><subject>Matrix</subject><subject>Number theory</subject><subject>Parameter estimation</subject><subject>Signal processing</subject><subject>Strong consistency</subject><subject>Studies</subject><issn>0047-259X</issn><issn>1095-7243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAUDKLguvoHPBU8t76kbT7Aiyx-wYIXBW8hTV93U7bbmmQX_PemrGdhYA5v5r15Q8gthYIC5fd90Q9HUzCgdQE0QZ2RBQVV54JV5TlZAFQiZ7X6uiRXIfQAlNaiWpDyKUQ3mOj2myxuMZuMNwNG9CEbu2w47KKbdpjZrfNTFtxmb3bhmlx0ifDmj5fk8_npY_War99f3laP69yWgsVcMsEZVBWvm7bhsgMpkGEnREOxNtJ0jDZpqFRrK844dpZKi61RJYOWs7JckrvT3smP3wcMUffjwc8JNOWSg6QAMqnYSWX9GILHTk8-feR_NAU9l6N7PZej53I00ASVTA8nE6b8R4deB-twn847jzbqdnT_2X8B-oJsoA</recordid><startdate>201507</startdate><enddate>201507</enddate><creator>Lahiri, Ananya</creator><creator>Kundu, Debasis</creator><creator>Mitra, Amit</creator><general>Elsevier Inc</general><general>Taylor &amp; Francis LLC</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>201507</creationdate><title>Estimating the parameters of multiple chirp signals</title><author>Lahiri, Ananya ; Kundu, Debasis ; Mitra, Amit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-8276204465bdb68f087e2ef77b1e5a8af21b46599dc4626efc18ceda9320d6233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Asymptotic distribution</topic><topic>Asymptotic methods</topic><topic>Chirp signals</topic><topic>Estimating techniques</topic><topic>Least squares estimators</topic><topic>Linear process</topic><topic>Matrix</topic><topic>Number theory</topic><topic>Parameter estimation</topic><topic>Signal processing</topic><topic>Strong consistency</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lahiri, Ananya</creatorcontrib><creatorcontrib>Kundu, Debasis</creatorcontrib><creatorcontrib>Mitra, Amit</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of multivariate analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lahiri, Ananya</au><au>Kundu, Debasis</au><au>Mitra, Amit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating the parameters of multiple chirp signals</atitle><jtitle>Journal of multivariate analysis</jtitle><date>2015-07</date><risdate>2015</risdate><volume>139</volume><spage>189</spage><epage>206</epage><pages>189-206</pages><issn>0047-259X</issn><eissn>1095-7243</eissn><coden>JMVAAI</coden><abstract>Chirp signals occur naturally in different areas of signal processing. Recently, Kundu and Nandi (2008) considered the least squares estimators of the unknown parameters of a chirp signal model and established their consistency and asymptotic normality properties. It is observed that the dispersion matrix of the asymptotic distribution of the least squares estimators is quite complicated. The aim of this paper is twofold. First, using a number theoretic result of Vinogradov (1954), we present a simplified form of the above mentioned dispersion matrix. Secondly, using the orthogonal structure of the different chirp components, we propose a step by step sequential estimation procedure of the unknown parameters of the model. Under the proposed sequential procedure, the problem of estimation of the parameters of a multiple chirp signal model reduces to solving only a two dimensional optimization problem at each step. It is observed that the estimators obtained by the proposed method are strongly consistent. Due to the complicated nature of the model, we could not establish the asymptotic distribution of the proposed sequential estimators. We perform some simulation experiments to compare the performance of the proposed and least squares estimators for small sample sizes, and for different parameter values. It is observed that the mean squared errors of the proposed estimators are very close to the corresponding mean squared errors of the least squares estimators. Two real data sets have been analyzed for illustrative purposes.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jmva.2015.01.019</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0047-259X
ispartof Journal of multivariate analysis, 2015-07, Vol.139, p.189-206
issn 0047-259X
1095-7243
language eng
recordid cdi_proquest_journals_1686081008
source ScienceDirect Freedom Collection
subjects Asymptotic distribution
Asymptotic methods
Chirp signals
Estimating techniques
Least squares estimators
Linear process
Matrix
Number theory
Parameter estimation
Signal processing
Strong consistency
Studies
title Estimating the parameters of multiple chirp signals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A20%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20the%20parameters%20of%20multiple%20chirp%20signals&rft.jtitle=Journal%20of%20multivariate%20analysis&rft.au=Lahiri,%20Ananya&rft.date=2015-07&rft.volume=139&rft.spage=189&rft.epage=206&rft.pages=189-206&rft.issn=0047-259X&rft.eissn=1095-7243&rft.coden=JMVAAI&rft_id=info:doi/10.1016/j.jmva.2015.01.019&rft_dat=%3Cproquest_cross%3E3705581881%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-8276204465bdb68f087e2ef77b1e5a8af21b46599dc4626efc18ceda9320d6233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1686081008&rft_id=info:pmid/&rfr_iscdi=true