Loading…
Direct, one-step molding of 3D-printed structures for convenient fabrication of truly 3D PDMS microfluidic chips
In this work, we developed a convenient, one-step soft-lithographic-based molding technique for molding truly 3D microfluidic channels in polydimethylsiloxane (PDMS) by overcoming two grand challenges. We optimized the post-treatment conditions for 3D-printed resin structures to facilitate the use o...
Saved in:
Published in: | Microfluidics and nanofluidics 2015-07, Vol.19 (1), p.9-18 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work, we developed a convenient, one-step soft-lithographic-based molding technique for molding truly 3D microfluidic channels in polydimethylsiloxane (PDMS) by overcoming two grand challenges. We optimized the post-treatment conditions for 3D-printed resin structures to facilitate the use of them as masters for PDMS replica molding. What is more important, we demonstrated a novel method for single-step molding from 3D-printed microstructures to generate truly 3D microfluidic networks easily. With this technique, we fabricated some key, functional 3D microfluidic structures and components including a basket-weaving network, a 3D chaotic advective mixer and microfluidic peristaltic valves. Furthermore, an interesting “injection-on-demand” microfluidic device was also demonstrated. Our technique offers a simple, fast route to the fabrication of 3D microfluidic chips in a short time without clean-room facilities. |
---|---|
ISSN: | 1613-4982 1613-4990 |
DOI: | 10.1007/s10404-014-1542-4 |