Loading…

About the Optimal Grid for SMOS Level 1C and Level 2 Products

Remotely sensed measurements acquired by the European Space Agency's Soil Moisture and Ocean Salinity (SMOS) satellite are processed in a uniform equal-area grid, the Icosahedral Snyder Equal Area (ISEA) 4H9. Brightness temperature measurements are projected onto that grid (the so-called Level...

Full description

Saved in:
Bibliographic Details
Published in:IEEE geoscience and remote sensing letters 2015-08, Vol.12 (8), p.1630-1634
Main Authors: Talone, M., Portabella, M., Martinez, J., Gonzalez-Gambau, V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Remotely sensed measurements acquired by the European Space Agency's Soil Moisture and Ocean Salinity (SMOS) satellite are processed in a uniform equal-area grid, the Icosahedral Snyder Equal Area (ISEA) 4H9. Brightness temperature measurements are projected onto that grid (the so-called Level 1C), as well as sea surface salinity and soil moisture estimates (Level 2). The ISEA grid has been chosen for its characteristics of equal area and almost uniform intercell spacing. Nevertheless, when considering the SMOS viewing geometry, the measurement footprint size, and the processing applied to those measurements, this choice may be revisited. With this objective, the ISEA 4H9 grid is compared to other equal-area grids with different sizes and orientations with respect to the satellite track. The best configuration resulted to be a 25-km-width grid symmetrical with respect to satellite track. This grid appeared to be better suited for improving SMOS Level 2 retrieval algorithms as well as to serve as input for higher level data production, since it best accounts for the instrument's viewing geometry and substantially reduces the correlation between adjacent grid cells.
ISSN:1545-598X
1558-0571
DOI:10.1109/LGRS.2015.2416920