Loading…

Do growing degree days predict phenology across butterfly species?

Global climate change is causing shifts in phenology across multiple species. We use a geographically and temporally extensive data set of butterfly abundance across the state of Ohio to ask whether phenological change can be predicted from climatological data. Our focus is on growing degree days (G...

Full description

Saved in:
Bibliographic Details
Published in:Ecology (Durham) 2015-06, Vol.96 (6), p.1473-1479
Main Authors: Cayton, Heather L, Haddad, Nick M, Gross, Kevin, Diamond, Sarah E, Ries, Leslie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a4733-f4214cc7616e4708e5573f6ef197dc7f98d837d382fed54a699ba2e6d627a8503
cites cdi_FETCH-LOGICAL-a4733-f4214cc7616e4708e5573f6ef197dc7f98d837d382fed54a699ba2e6d627a8503
container_end_page 1479
container_issue 6
container_start_page 1473
container_title Ecology (Durham)
container_volume 96
creator Cayton, Heather L
Haddad, Nick M
Gross, Kevin
Diamond, Sarah E
Ries, Leslie
description Global climate change is causing shifts in phenology across multiple species. We use a geographically and temporally extensive data set of butterfly abundance across the state of Ohio to ask whether phenological change can be predicted from climatological data. Our focus is on growing degree days (GDD), a commonly used measure of thermal accumulation, as the mechanistic link between climate change and species phenology. We used simple calculations of median absolute error associated with GDD and an alternative predictor of phenology, ordinal date, for both first emergence and peak abundance of 13 butterfly species. We show that GDD acts as a better predictor than date for first emergence in nearly all species, and for peak abundance in more than half of all species, especially univoltine species. Species with less ecological flexibility, in particular those with greater dietary specialization, had greater predictability with GDD. The new method we develop for predicting phenology using GDD offers a simple yet effective way to predict species' responses to climate change.
doi_str_mv 10.1890/15-0131.1
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1689891335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43495111</jstor_id><sourcerecordid>43495111</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4733-f4214cc7616e4708e5573f6ef197dc7f98d837d382fed54a699ba2e6d627a8503</originalsourceid><addsrcrecordid>eNp1kU1v1DAQhi0EEsvCgR-AiMSFHlI88fcJlW35kCpxgB44WW48DlmlcbCzKvn3eAkCxIcvc_Az7_gZE_IY6CloQ1-AqCkwOIU7ZAOGmdqAonfJhlJoaiOFvk8e5Lyn5QDXG_LqPFZdirf92FUeu4RYebfkakro-3aups84xiF2S-XaFHOurg_zjCkMS5UnbHvMLx-Se8ENGR_9qFty9fri4-5tffn-zbvd2WXtuGKsDrwB3rZKgkSuqEYhFAsSAxjlWxWM9popz3QT0AvupDHXrkHpZaOcFpRtyfM1d0rxywHzbG_63OIwuBHjIdsiWpRYQ5uCPvsD3cdDGsvrLEhttAHGRKFOVuq7WcJgp9TfuLRYoPa4TQvCHrdpobBiZW_7AZf_g_Zi96mhIIyUcNTekidr3z7PMf3s44wbAXDMfbreBxet61Kf7dWHEiDL_xjNtf7l4uZliqPF7H4bN_lg56_zv6m_LL4BEXedvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1689891335</pqid></control><display><type>article</type><title>Do growing degree days predict phenology across butterfly species?</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Cayton, Heather L ; Haddad, Nick M ; Gross, Kevin ; Diamond, Sarah E ; Ries, Leslie</creator><creatorcontrib>Cayton, Heather L ; Haddad, Nick M ; Gross, Kevin ; Diamond, Sarah E ; Ries, Leslie</creatorcontrib><description>Global climate change is causing shifts in phenology across multiple species. We use a geographically and temporally extensive data set of butterfly abundance across the state of Ohio to ask whether phenological change can be predicted from climatological data. Our focus is on growing degree days (GDD), a commonly used measure of thermal accumulation, as the mechanistic link between climate change and species phenology. We used simple calculations of median absolute error associated with GDD and an alternative predictor of phenology, ordinal date, for both first emergence and peak abundance of 13 butterfly species. We show that GDD acts as a better predictor than date for first emergence in nearly all species, and for peak abundance in more than half of all species, especially univoltine species. Species with less ecological flexibility, in particular those with greater dietary specialization, had greater predictability with GDD. The new method we develop for predicting phenology using GDD offers a simple yet effective way to predict species' responses to climate change.</description><identifier>ISSN: 0012-9658</identifier><identifier>EISSN: 1939-9170</identifier><identifier>DOI: 10.1890/15-0131.1</identifier><identifier>CODEN: ECGYAQ</identifier><language>eng</language><publisher>Brooklyn: Ecological Society of America</publisher><subject>Agroecology ; Butterflies ; Butterflies &amp; moths ; Climate change ; Climate models ; data collection ; Datasets ; first emergence ; growing degree days ; heat sums ; Insect ecology ; Lepidoptera ; meteorological data ; Ohio, USA ; ordinal date ; peak abundance ; Phenology ; Plant growth ; Predictability ; prediction ; Predictions ; Species ; Statistical median ; temperature ; univoltine habit</subject><ispartof>Ecology (Durham), 2015-06, Vol.96 (6), p.1473-1479</ispartof><rights>Copyright © 2015 Ecological Society of America</rights><rights>2015 by the Ecological Society of America</rights><rights>Copyright Ecological Society of America Jun 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4733-f4214cc7616e4708e5573f6ef197dc7f98d837d382fed54a699ba2e6d627a8503</citedby><cites>FETCH-LOGICAL-a4733-f4214cc7616e4708e5573f6ef197dc7f98d837d382fed54a699ba2e6d627a8503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43495111$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43495111$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Cayton, Heather L</creatorcontrib><creatorcontrib>Haddad, Nick M</creatorcontrib><creatorcontrib>Gross, Kevin</creatorcontrib><creatorcontrib>Diamond, Sarah E</creatorcontrib><creatorcontrib>Ries, Leslie</creatorcontrib><title>Do growing degree days predict phenology across butterfly species?</title><title>Ecology (Durham)</title><description>Global climate change is causing shifts in phenology across multiple species. We use a geographically and temporally extensive data set of butterfly abundance across the state of Ohio to ask whether phenological change can be predicted from climatological data. Our focus is on growing degree days (GDD), a commonly used measure of thermal accumulation, as the mechanistic link between climate change and species phenology. We used simple calculations of median absolute error associated with GDD and an alternative predictor of phenology, ordinal date, for both first emergence and peak abundance of 13 butterfly species. We show that GDD acts as a better predictor than date for first emergence in nearly all species, and for peak abundance in more than half of all species, especially univoltine species. Species with less ecological flexibility, in particular those with greater dietary specialization, had greater predictability with GDD. The new method we develop for predicting phenology using GDD offers a simple yet effective way to predict species' responses to climate change.</description><subject>Agroecology</subject><subject>Butterflies</subject><subject>Butterflies &amp; moths</subject><subject>Climate change</subject><subject>Climate models</subject><subject>data collection</subject><subject>Datasets</subject><subject>first emergence</subject><subject>growing degree days</subject><subject>heat sums</subject><subject>Insect ecology</subject><subject>Lepidoptera</subject><subject>meteorological data</subject><subject>Ohio, USA</subject><subject>ordinal date</subject><subject>peak abundance</subject><subject>Phenology</subject><subject>Plant growth</subject><subject>Predictability</subject><subject>prediction</subject><subject>Predictions</subject><subject>Species</subject><subject>Statistical median</subject><subject>temperature</subject><subject>univoltine habit</subject><issn>0012-9658</issn><issn>1939-9170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kU1v1DAQhi0EEsvCgR-AiMSFHlI88fcJlW35kCpxgB44WW48DlmlcbCzKvn3eAkCxIcvc_Az7_gZE_IY6CloQ1-AqCkwOIU7ZAOGmdqAonfJhlJoaiOFvk8e5Lyn5QDXG_LqPFZdirf92FUeu4RYebfkakro-3aups84xiF2S-XaFHOurg_zjCkMS5UnbHvMLx-Se8ENGR_9qFty9fri4-5tffn-zbvd2WXtuGKsDrwB3rZKgkSuqEYhFAsSAxjlWxWM9popz3QT0AvupDHXrkHpZaOcFpRtyfM1d0rxywHzbG_63OIwuBHjIdsiWpRYQ5uCPvsD3cdDGsvrLEhttAHGRKFOVuq7WcJgp9TfuLRYoPa4TQvCHrdpobBiZW_7AZf_g_Zi96mhIIyUcNTekidr3z7PMf3s44wbAXDMfbreBxet61Kf7dWHEiDL_xjNtf7l4uZliqPF7H4bN_lg56_zv6m_LL4BEXedvA</recordid><startdate>201506</startdate><enddate>201506</enddate><creator>Cayton, Heather L</creator><creator>Haddad, Nick M</creator><creator>Gross, Kevin</creator><creator>Diamond, Sarah E</creator><creator>Ries, Leslie</creator><general>Ecological Society of America</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7U6</scope></search><sort><creationdate>201506</creationdate><title>Do growing degree days predict phenology across butterfly species?</title><author>Cayton, Heather L ; Haddad, Nick M ; Gross, Kevin ; Diamond, Sarah E ; Ries, Leslie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4733-f4214cc7616e4708e5573f6ef197dc7f98d837d382fed54a699ba2e6d627a8503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Agroecology</topic><topic>Butterflies</topic><topic>Butterflies &amp; moths</topic><topic>Climate change</topic><topic>Climate models</topic><topic>data collection</topic><topic>Datasets</topic><topic>first emergence</topic><topic>growing degree days</topic><topic>heat sums</topic><topic>Insect ecology</topic><topic>Lepidoptera</topic><topic>meteorological data</topic><topic>Ohio, USA</topic><topic>ordinal date</topic><topic>peak abundance</topic><topic>Phenology</topic><topic>Plant growth</topic><topic>Predictability</topic><topic>prediction</topic><topic>Predictions</topic><topic>Species</topic><topic>Statistical median</topic><topic>temperature</topic><topic>univoltine habit</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cayton, Heather L</creatorcontrib><creatorcontrib>Haddad, Nick M</creatorcontrib><creatorcontrib>Gross, Kevin</creatorcontrib><creatorcontrib>Diamond, Sarah E</creatorcontrib><creatorcontrib>Ries, Leslie</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><jtitle>Ecology (Durham)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cayton, Heather L</au><au>Haddad, Nick M</au><au>Gross, Kevin</au><au>Diamond, Sarah E</au><au>Ries, Leslie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Do growing degree days predict phenology across butterfly species?</atitle><jtitle>Ecology (Durham)</jtitle><date>2015-06</date><risdate>2015</risdate><volume>96</volume><issue>6</issue><spage>1473</spage><epage>1479</epage><pages>1473-1479</pages><issn>0012-9658</issn><eissn>1939-9170</eissn><coden>ECGYAQ</coden><abstract>Global climate change is causing shifts in phenology across multiple species. We use a geographically and temporally extensive data set of butterfly abundance across the state of Ohio to ask whether phenological change can be predicted from climatological data. Our focus is on growing degree days (GDD), a commonly used measure of thermal accumulation, as the mechanistic link between climate change and species phenology. We used simple calculations of median absolute error associated with GDD and an alternative predictor of phenology, ordinal date, for both first emergence and peak abundance of 13 butterfly species. We show that GDD acts as a better predictor than date for first emergence in nearly all species, and for peak abundance in more than half of all species, especially univoltine species. Species with less ecological flexibility, in particular those with greater dietary specialization, had greater predictability with GDD. The new method we develop for predicting phenology using GDD offers a simple yet effective way to predict species' responses to climate change.</abstract><cop>Brooklyn</cop><pub>Ecological Society of America</pub><doi>10.1890/15-0131.1</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-9658
ispartof Ecology (Durham), 2015-06, Vol.96 (6), p.1473-1479
issn 0012-9658
1939-9170
language eng
recordid cdi_proquest_journals_1689891335
source JSTOR Archival Journals and Primary Sources Collection; Wiley-Blackwell Read & Publish Collection
subjects Agroecology
Butterflies
Butterflies & moths
Climate change
Climate models
data collection
Datasets
first emergence
growing degree days
heat sums
Insect ecology
Lepidoptera
meteorological data
Ohio, USA
ordinal date
peak abundance
Phenology
Plant growth
Predictability
prediction
Predictions
Species
Statistical median
temperature
univoltine habit
title Do growing degree days predict phenology across butterfly species?
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A49%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Do%20growing%20degree%20days%20predict%20phenology%20across%20butterfly%20species?&rft.jtitle=Ecology%20(Durham)&rft.au=Cayton,%20Heather%20L&rft.date=2015-06&rft.volume=96&rft.issue=6&rft.spage=1473&rft.epage=1479&rft.pages=1473-1479&rft.issn=0012-9658&rft.eissn=1939-9170&rft.coden=ECGYAQ&rft_id=info:doi/10.1890/15-0131.1&rft_dat=%3Cjstor_proqu%3E43495111%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a4733-f4214cc7616e4708e5573f6ef197dc7f98d837d382fed54a699ba2e6d627a8503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1689891335&rft_id=info:pmid/&rft_jstor_id=43495111&rfr_iscdi=true