Loading…
Do growing degree days predict phenology across butterfly species?
Global climate change is causing shifts in phenology across multiple species. We use a geographically and temporally extensive data set of butterfly abundance across the state of Ohio to ask whether phenological change can be predicted from climatological data. Our focus is on growing degree days (G...
Saved in:
Published in: | Ecology (Durham) 2015-06, Vol.96 (6), p.1473-1479 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a4733-f4214cc7616e4708e5573f6ef197dc7f98d837d382fed54a699ba2e6d627a8503 |
---|---|
cites | cdi_FETCH-LOGICAL-a4733-f4214cc7616e4708e5573f6ef197dc7f98d837d382fed54a699ba2e6d627a8503 |
container_end_page | 1479 |
container_issue | 6 |
container_start_page | 1473 |
container_title | Ecology (Durham) |
container_volume | 96 |
creator | Cayton, Heather L Haddad, Nick M Gross, Kevin Diamond, Sarah E Ries, Leslie |
description | Global climate change is causing shifts in phenology across multiple species. We use a geographically and temporally extensive data set of butterfly abundance across the state of Ohio to ask whether phenological change can be predicted from climatological data. Our focus is on growing degree days (GDD), a commonly used measure of thermal accumulation, as the mechanistic link between climate change and species phenology. We used simple calculations of median absolute error associated with GDD and an alternative predictor of phenology, ordinal date, for both first emergence and peak abundance of 13 butterfly species. We show that GDD acts as a better predictor than date for first emergence in nearly all species, and for peak abundance in more than half of all species, especially univoltine species. Species with less ecological flexibility, in particular those with greater dietary specialization, had greater predictability with GDD. The new method we develop for predicting phenology using GDD offers a simple yet effective way to predict species' responses to climate change. |
doi_str_mv | 10.1890/15-0131.1 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1689891335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43495111</jstor_id><sourcerecordid>43495111</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4733-f4214cc7616e4708e5573f6ef197dc7f98d837d382fed54a699ba2e6d627a8503</originalsourceid><addsrcrecordid>eNp1kU1v1DAQhi0EEsvCgR-AiMSFHlI88fcJlW35kCpxgB44WW48DlmlcbCzKvn3eAkCxIcvc_Az7_gZE_IY6CloQ1-AqCkwOIU7ZAOGmdqAonfJhlJoaiOFvk8e5Lyn5QDXG_LqPFZdirf92FUeu4RYebfkakro-3aups84xiF2S-XaFHOurg_zjCkMS5UnbHvMLx-Se8ENGR_9qFty9fri4-5tffn-zbvd2WXtuGKsDrwB3rZKgkSuqEYhFAsSAxjlWxWM9popz3QT0AvupDHXrkHpZaOcFpRtyfM1d0rxywHzbG_63OIwuBHjIdsiWpRYQ5uCPvsD3cdDGsvrLEhttAHGRKFOVuq7WcJgp9TfuLRYoPa4TQvCHrdpobBiZW_7AZf_g_Zi96mhIIyUcNTekidr3z7PMf3s44wbAXDMfbreBxet61Kf7dWHEiDL_xjNtf7l4uZliqPF7H4bN_lg56_zv6m_LL4BEXedvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1689891335</pqid></control><display><type>article</type><title>Do growing degree days predict phenology across butterfly species?</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Wiley-Blackwell Read & Publish Collection</source><creator>Cayton, Heather L ; Haddad, Nick M ; Gross, Kevin ; Diamond, Sarah E ; Ries, Leslie</creator><creatorcontrib>Cayton, Heather L ; Haddad, Nick M ; Gross, Kevin ; Diamond, Sarah E ; Ries, Leslie</creatorcontrib><description>Global climate change is causing shifts in phenology across multiple species. We use a geographically and temporally extensive data set of butterfly abundance across the state of Ohio to ask whether phenological change can be predicted from climatological data. Our focus is on growing degree days (GDD), a commonly used measure of thermal accumulation, as the mechanistic link between climate change and species phenology. We used simple calculations of median absolute error associated with GDD and an alternative predictor of phenology, ordinal date, for both first emergence and peak abundance of 13 butterfly species. We show that GDD acts as a better predictor than date for first emergence in nearly all species, and for peak abundance in more than half of all species, especially univoltine species. Species with less ecological flexibility, in particular those with greater dietary specialization, had greater predictability with GDD. The new method we develop for predicting phenology using GDD offers a simple yet effective way to predict species' responses to climate change.</description><identifier>ISSN: 0012-9658</identifier><identifier>EISSN: 1939-9170</identifier><identifier>DOI: 10.1890/15-0131.1</identifier><identifier>CODEN: ECGYAQ</identifier><language>eng</language><publisher>Brooklyn: Ecological Society of America</publisher><subject>Agroecology ; Butterflies ; Butterflies & moths ; Climate change ; Climate models ; data collection ; Datasets ; first emergence ; growing degree days ; heat sums ; Insect ecology ; Lepidoptera ; meteorological data ; Ohio, USA ; ordinal date ; peak abundance ; Phenology ; Plant growth ; Predictability ; prediction ; Predictions ; Species ; Statistical median ; temperature ; univoltine habit</subject><ispartof>Ecology (Durham), 2015-06, Vol.96 (6), p.1473-1479</ispartof><rights>Copyright © 2015 Ecological Society of America</rights><rights>2015 by the Ecological Society of America</rights><rights>Copyright Ecological Society of America Jun 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4733-f4214cc7616e4708e5573f6ef197dc7f98d837d382fed54a699ba2e6d627a8503</citedby><cites>FETCH-LOGICAL-a4733-f4214cc7616e4708e5573f6ef197dc7f98d837d382fed54a699ba2e6d627a8503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43495111$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43495111$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Cayton, Heather L</creatorcontrib><creatorcontrib>Haddad, Nick M</creatorcontrib><creatorcontrib>Gross, Kevin</creatorcontrib><creatorcontrib>Diamond, Sarah E</creatorcontrib><creatorcontrib>Ries, Leslie</creatorcontrib><title>Do growing degree days predict phenology across butterfly species?</title><title>Ecology (Durham)</title><description>Global climate change is causing shifts in phenology across multiple species. We use a geographically and temporally extensive data set of butterfly abundance across the state of Ohio to ask whether phenological change can be predicted from climatological data. Our focus is on growing degree days (GDD), a commonly used measure of thermal accumulation, as the mechanistic link between climate change and species phenology. We used simple calculations of median absolute error associated with GDD and an alternative predictor of phenology, ordinal date, for both first emergence and peak abundance of 13 butterfly species. We show that GDD acts as a better predictor than date for first emergence in nearly all species, and for peak abundance in more than half of all species, especially univoltine species. Species with less ecological flexibility, in particular those with greater dietary specialization, had greater predictability with GDD. The new method we develop for predicting phenology using GDD offers a simple yet effective way to predict species' responses to climate change.</description><subject>Agroecology</subject><subject>Butterflies</subject><subject>Butterflies & moths</subject><subject>Climate change</subject><subject>Climate models</subject><subject>data collection</subject><subject>Datasets</subject><subject>first emergence</subject><subject>growing degree days</subject><subject>heat sums</subject><subject>Insect ecology</subject><subject>Lepidoptera</subject><subject>meteorological data</subject><subject>Ohio, USA</subject><subject>ordinal date</subject><subject>peak abundance</subject><subject>Phenology</subject><subject>Plant growth</subject><subject>Predictability</subject><subject>prediction</subject><subject>Predictions</subject><subject>Species</subject><subject>Statistical median</subject><subject>temperature</subject><subject>univoltine habit</subject><issn>0012-9658</issn><issn>1939-9170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kU1v1DAQhi0EEsvCgR-AiMSFHlI88fcJlW35kCpxgB44WW48DlmlcbCzKvn3eAkCxIcvc_Az7_gZE_IY6CloQ1-AqCkwOIU7ZAOGmdqAonfJhlJoaiOFvk8e5Lyn5QDXG_LqPFZdirf92FUeu4RYebfkakro-3aups84xiF2S-XaFHOurg_zjCkMS5UnbHvMLx-Se8ENGR_9qFty9fri4-5tffn-zbvd2WXtuGKsDrwB3rZKgkSuqEYhFAsSAxjlWxWM9popz3QT0AvupDHXrkHpZaOcFpRtyfM1d0rxywHzbG_63OIwuBHjIdsiWpRYQ5uCPvsD3cdDGsvrLEhttAHGRKFOVuq7WcJgp9TfuLRYoPa4TQvCHrdpobBiZW_7AZf_g_Zi96mhIIyUcNTekidr3z7PMf3s44wbAXDMfbreBxet61Kf7dWHEiDL_xjNtf7l4uZliqPF7H4bN_lg56_zv6m_LL4BEXedvA</recordid><startdate>201506</startdate><enddate>201506</enddate><creator>Cayton, Heather L</creator><creator>Haddad, Nick M</creator><creator>Gross, Kevin</creator><creator>Diamond, Sarah E</creator><creator>Ries, Leslie</creator><general>Ecological Society of America</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7U6</scope></search><sort><creationdate>201506</creationdate><title>Do growing degree days predict phenology across butterfly species?</title><author>Cayton, Heather L ; Haddad, Nick M ; Gross, Kevin ; Diamond, Sarah E ; Ries, Leslie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4733-f4214cc7616e4708e5573f6ef197dc7f98d837d382fed54a699ba2e6d627a8503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Agroecology</topic><topic>Butterflies</topic><topic>Butterflies & moths</topic><topic>Climate change</topic><topic>Climate models</topic><topic>data collection</topic><topic>Datasets</topic><topic>first emergence</topic><topic>growing degree days</topic><topic>heat sums</topic><topic>Insect ecology</topic><topic>Lepidoptera</topic><topic>meteorological data</topic><topic>Ohio, USA</topic><topic>ordinal date</topic><topic>peak abundance</topic><topic>Phenology</topic><topic>Plant growth</topic><topic>Predictability</topic><topic>prediction</topic><topic>Predictions</topic><topic>Species</topic><topic>Statistical median</topic><topic>temperature</topic><topic>univoltine habit</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cayton, Heather L</creatorcontrib><creatorcontrib>Haddad, Nick M</creatorcontrib><creatorcontrib>Gross, Kevin</creatorcontrib><creatorcontrib>Diamond, Sarah E</creatorcontrib><creatorcontrib>Ries, Leslie</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><jtitle>Ecology (Durham)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cayton, Heather L</au><au>Haddad, Nick M</au><au>Gross, Kevin</au><au>Diamond, Sarah E</au><au>Ries, Leslie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Do growing degree days predict phenology across butterfly species?</atitle><jtitle>Ecology (Durham)</jtitle><date>2015-06</date><risdate>2015</risdate><volume>96</volume><issue>6</issue><spage>1473</spage><epage>1479</epage><pages>1473-1479</pages><issn>0012-9658</issn><eissn>1939-9170</eissn><coden>ECGYAQ</coden><abstract>Global climate change is causing shifts in phenology across multiple species. We use a geographically and temporally extensive data set of butterfly abundance across the state of Ohio to ask whether phenological change can be predicted from climatological data. Our focus is on growing degree days (GDD), a commonly used measure of thermal accumulation, as the mechanistic link between climate change and species phenology. We used simple calculations of median absolute error associated with GDD and an alternative predictor of phenology, ordinal date, for both first emergence and peak abundance of 13 butterfly species. We show that GDD acts as a better predictor than date for first emergence in nearly all species, and for peak abundance in more than half of all species, especially univoltine species. Species with less ecological flexibility, in particular those with greater dietary specialization, had greater predictability with GDD. The new method we develop for predicting phenology using GDD offers a simple yet effective way to predict species' responses to climate change.</abstract><cop>Brooklyn</cop><pub>Ecological Society of America</pub><doi>10.1890/15-0131.1</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-9658 |
ispartof | Ecology (Durham), 2015-06, Vol.96 (6), p.1473-1479 |
issn | 0012-9658 1939-9170 |
language | eng |
recordid | cdi_proquest_journals_1689891335 |
source | JSTOR Archival Journals and Primary Sources Collection; Wiley-Blackwell Read & Publish Collection |
subjects | Agroecology Butterflies Butterflies & moths Climate change Climate models data collection Datasets first emergence growing degree days heat sums Insect ecology Lepidoptera meteorological data Ohio, USA ordinal date peak abundance Phenology Plant growth Predictability prediction Predictions Species Statistical median temperature univoltine habit |
title | Do growing degree days predict phenology across butterfly species? |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A49%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Do%20growing%20degree%20days%20predict%20phenology%20across%20butterfly%20species?&rft.jtitle=Ecology%20(Durham)&rft.au=Cayton,%20Heather%20L&rft.date=2015-06&rft.volume=96&rft.issue=6&rft.spage=1473&rft.epage=1479&rft.pages=1473-1479&rft.issn=0012-9658&rft.eissn=1939-9170&rft.coden=ECGYAQ&rft_id=info:doi/10.1890/15-0131.1&rft_dat=%3Cjstor_proqu%3E43495111%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a4733-f4214cc7616e4708e5573f6ef197dc7f98d837d382fed54a699ba2e6d627a8503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1689891335&rft_id=info:pmid/&rft_jstor_id=43495111&rfr_iscdi=true |