Loading…

Equilibrium Janus Drop Topology. 2. A Single Drop in a Spherical Continuous Phase

The equilibrium topology is analyzed of a single Janus drops of oils O1 and O2 in a spherical continuous aqueous phase, W, co-centered with O1. The radius of the O1 oil cap is equal to unity, while that of the oil O2 is varied and the cap centered individually. When the space of O2 exceeds the limit...

Full description

Saved in:
Bibliographic Details
Published in:Journal of dispersion science and technology 2015-12, Vol.36 (12), p.1685-1692
Main Author: Friberg, Stig E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-37b2025a3b9a1ebf833d0200bfcbe2ab9ca395e59ad2715192e6913de99487a23
cites cdi_FETCH-LOGICAL-c408t-37b2025a3b9a1ebf833d0200bfcbe2ab9ca395e59ad2715192e6913de99487a23
container_end_page 1692
container_issue 12
container_start_page 1685
container_title Journal of dispersion science and technology
container_volume 36
creator Friberg, Stig E.
description The equilibrium topology is analyzed of a single Janus drops of oils O1 and O2 in a spherical continuous aqueous phase, W, co-centered with O1. The radius of the O1 oil cap is equal to unity, while that of the oil O2 is varied and the cap centered individually. When the space of O2 exceeds the limit of W, the excess volume is discarded and the border surface of W is considered without interfacial energy. Earlier findings, when increasing the O2 on O1 coverage on a single Janus drop in an infinite aqueous phase, brought to light a selective O2 inversion from an emulsion (O1 + O2)/W to (O1 + W)/O2 at a well-defined surface coverage of O1 by O2. This specific inversion did not take place with the Janus drop in an aqueous phase of limited dimensions. Instead the inversion was perceived to take place, when the volume fraction of O2, V O2  = (V O1  + V w  + V O2 ) exceeded 0.5. The information from the earlier publication was used to calculate the variations of volumes V O2 and V W with the radius of the W sphere. The results partially contradicted earlier results.
doi_str_mv 10.1080/01932691.2014.1003070
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1696026865</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1718971543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-37b2025a3b9a1ebf833d0200bfcbe2ab9ca395e59ad2715192e6913de99487a23</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKs_QQi4cTP1JplXdpZaXxRUWtchM820KWkyTTpI_70ZqhsXri733u8cDgehawIjAiXcAeGM5pyMKJA0noBBASdoQDJGE8oycooGPZP00Dm6CGEDcS-gHKCP6a7TRlded1v8Km0X8IN3LV641hm3OowwHeExnmu7Mur40hZLPG_XyutaGjxxdq9t56LyfS2DukRnjTRBXf3MIfp8nC4mz8ns7ellMp4ldQrlPmFFRYFmklVcElU1JWNLoABVU1eKyorXkvFMZVwuaUEywqmK6dlScZ6WhaRsiG6Pvq13u06FvdjqUCtjpFUxjCAFKXlUpiyiN3_Qjeu8jekEyXkONC_zLFLZkaq9C8GrRrReb6U_CAKiL1r8Fi36osVP0VF3f9Rp2zi_lV_Om6XYy4NxvvHS1joI9r_FN9S8ggE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1696026865</pqid></control><display><type>article</type><title>Equilibrium Janus Drop Topology. 2. A Single Drop in a Spherical Continuous Phase</title><source>Taylor and Francis Science and Technology Collection</source><creator>Friberg, Stig E.</creator><creatorcontrib>Friberg, Stig E.</creatorcontrib><description>The equilibrium topology is analyzed of a single Janus drops of oils O1 and O2 in a spherical continuous aqueous phase, W, co-centered with O1. The radius of the O1 oil cap is equal to unity, while that of the oil O2 is varied and the cap centered individually. When the space of O2 exceeds the limit of W, the excess volume is discarded and the border surface of W is considered without interfacial energy. Earlier findings, when increasing the O2 on O1 coverage on a single Janus drop in an infinite aqueous phase, brought to light a selective O2 inversion from an emulsion (O1 + O2)/W to (O1 + W)/O2 at a well-defined surface coverage of O1 by O2. This specific inversion did not take place with the Janus drop in an aqueous phase of limited dimensions. Instead the inversion was perceived to take place, when the volume fraction of O2, V O2  = (V O1  + V w  + V O2 ) exceeded 0.5. The information from the earlier publication was used to calculate the variations of volumes V O2 and V W with the radius of the W sphere. The results partially contradicted earlier results.</description><identifier>ISSN: 0193-2691</identifier><identifier>EISSN: 1532-2351</identifier><identifier>DOI: 10.1080/01932691.2014.1003070</identifier><language>eng</language><publisher>Philadelphia: Taylor &amp; Francis</publisher><subject>Borders ; Dispersions ; Double emulsions ; emulsions drop topology ; interfacial equilibrium ; interfacial tensions ; Inversions ; janus emulsions ; Mathematical analysis ; Nanoparticles ; Topology ; Unity</subject><ispartof>Journal of dispersion science and technology, 2015-12, Vol.36 (12), p.1685-1692</ispartof><rights>Copyright © Taylor &amp; Francis Group, LLC 2015</rights><rights>Copyright © Taylor &amp; Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-37b2025a3b9a1ebf833d0200bfcbe2ab9ca395e59ad2715192e6913de99487a23</citedby><cites>FETCH-LOGICAL-c408t-37b2025a3b9a1ebf833d0200bfcbe2ab9ca395e59ad2715192e6913de99487a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Friberg, Stig E.</creatorcontrib><title>Equilibrium Janus Drop Topology. 2. A Single Drop in a Spherical Continuous Phase</title><title>Journal of dispersion science and technology</title><description>The equilibrium topology is analyzed of a single Janus drops of oils O1 and O2 in a spherical continuous aqueous phase, W, co-centered with O1. The radius of the O1 oil cap is equal to unity, while that of the oil O2 is varied and the cap centered individually. When the space of O2 exceeds the limit of W, the excess volume is discarded and the border surface of W is considered without interfacial energy. Earlier findings, when increasing the O2 on O1 coverage on a single Janus drop in an infinite aqueous phase, brought to light a selective O2 inversion from an emulsion (O1 + O2)/W to (O1 + W)/O2 at a well-defined surface coverage of O1 by O2. This specific inversion did not take place with the Janus drop in an aqueous phase of limited dimensions. Instead the inversion was perceived to take place, when the volume fraction of O2, V O2  = (V O1  + V w  + V O2 ) exceeded 0.5. The information from the earlier publication was used to calculate the variations of volumes V O2 and V W with the radius of the W sphere. The results partially contradicted earlier results.</description><subject>Borders</subject><subject>Dispersions</subject><subject>Double emulsions</subject><subject>emulsions drop topology</subject><subject>interfacial equilibrium</subject><subject>interfacial tensions</subject><subject>Inversions</subject><subject>janus emulsions</subject><subject>Mathematical analysis</subject><subject>Nanoparticles</subject><subject>Topology</subject><subject>Unity</subject><issn>0193-2691</issn><issn>1532-2351</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKs_QQi4cTP1JplXdpZaXxRUWtchM820KWkyTTpI_70ZqhsXri733u8cDgehawIjAiXcAeGM5pyMKJA0noBBASdoQDJGE8oycooGPZP00Dm6CGEDcS-gHKCP6a7TRlded1v8Km0X8IN3LV641hm3OowwHeExnmu7Mur40hZLPG_XyutaGjxxdq9t56LyfS2DukRnjTRBXf3MIfp8nC4mz8ns7ellMp4ldQrlPmFFRYFmklVcElU1JWNLoABVU1eKyorXkvFMZVwuaUEywqmK6dlScZ6WhaRsiG6Pvq13u06FvdjqUCtjpFUxjCAFKXlUpiyiN3_Qjeu8jekEyXkONC_zLFLZkaq9C8GrRrReb6U_CAKiL1r8Fi36osVP0VF3f9Rp2zi_lV_Om6XYy4NxvvHS1joI9r_FN9S8ggE</recordid><startdate>20151202</startdate><enddate>20151202</enddate><creator>Friberg, Stig E.</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20151202</creationdate><title>Equilibrium Janus Drop Topology. 2. A Single Drop in a Spherical Continuous Phase</title><author>Friberg, Stig E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-37b2025a3b9a1ebf833d0200bfcbe2ab9ca395e59ad2715192e6913de99487a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Borders</topic><topic>Dispersions</topic><topic>Double emulsions</topic><topic>emulsions drop topology</topic><topic>interfacial equilibrium</topic><topic>interfacial tensions</topic><topic>Inversions</topic><topic>janus emulsions</topic><topic>Mathematical analysis</topic><topic>Nanoparticles</topic><topic>Topology</topic><topic>Unity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Friberg, Stig E.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of dispersion science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Friberg, Stig E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Equilibrium Janus Drop Topology. 2. A Single Drop in a Spherical Continuous Phase</atitle><jtitle>Journal of dispersion science and technology</jtitle><date>2015-12-02</date><risdate>2015</risdate><volume>36</volume><issue>12</issue><spage>1685</spage><epage>1692</epage><pages>1685-1692</pages><issn>0193-2691</issn><eissn>1532-2351</eissn><abstract>The equilibrium topology is analyzed of a single Janus drops of oils O1 and O2 in a spherical continuous aqueous phase, W, co-centered with O1. The radius of the O1 oil cap is equal to unity, while that of the oil O2 is varied and the cap centered individually. When the space of O2 exceeds the limit of W, the excess volume is discarded and the border surface of W is considered without interfacial energy. Earlier findings, when increasing the O2 on O1 coverage on a single Janus drop in an infinite aqueous phase, brought to light a selective O2 inversion from an emulsion (O1 + O2)/W to (O1 + W)/O2 at a well-defined surface coverage of O1 by O2. This specific inversion did not take place with the Janus drop in an aqueous phase of limited dimensions. Instead the inversion was perceived to take place, when the volume fraction of O2, V O2  = (V O1  + V w  + V O2 ) exceeded 0.5. The information from the earlier publication was used to calculate the variations of volumes V O2 and V W with the radius of the W sphere. The results partially contradicted earlier results.</abstract><cop>Philadelphia</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/01932691.2014.1003070</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0193-2691
ispartof Journal of dispersion science and technology, 2015-12, Vol.36 (12), p.1685-1692
issn 0193-2691
1532-2351
language eng
recordid cdi_proquest_journals_1696026865
source Taylor and Francis Science and Technology Collection
subjects Borders
Dispersions
Double emulsions
emulsions drop topology
interfacial equilibrium
interfacial tensions
Inversions
janus emulsions
Mathematical analysis
Nanoparticles
Topology
Unity
title Equilibrium Janus Drop Topology. 2. A Single Drop in a Spherical Continuous Phase
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A32%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Equilibrium%20Janus%20Drop%20Topology.%202.%20A%20Single%20Drop%20in%20a%20Spherical%20Continuous%20Phase&rft.jtitle=Journal%20of%20dispersion%20science%20and%20technology&rft.au=Friberg,%20Stig%20E.&rft.date=2015-12-02&rft.volume=36&rft.issue=12&rft.spage=1685&rft.epage=1692&rft.pages=1685-1692&rft.issn=0193-2691&rft.eissn=1532-2351&rft_id=info:doi/10.1080/01932691.2014.1003070&rft_dat=%3Cproquest_cross%3E1718971543%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-37b2025a3b9a1ebf833d0200bfcbe2ab9ca395e59ad2715192e6913de99487a23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1696026865&rft_id=info:pmid/&rfr_iscdi=true