Loading…

Adaptive Frequency-Domain RLS DFE for Uplink MIMO SC-FDMA

It is well known that, in the case of highly frequency-selective fading channels, the linear equalizer (LE) can suffer significant performance degradation compared with the decision feedback equalizer (DFE). In this paper, we develop a low-complexity adaptive frequency-domain DFE (AFD-DFE) for singl...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on vehicular technology 2015-07, Vol.64 (7), p.2819-2833
Main Authors: Iqbal, Naveed, Al-Dhahir, Naofal, Zerguine, Azzedine, Zidouri, Abdelmalek
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-76b9995a81e8967a341528e17d01dcabec395117d5b24b0f3bd28e8ce017e7d33
cites cdi_FETCH-LOGICAL-c291t-76b9995a81e8967a341528e17d01dcabec395117d5b24b0f3bd28e8ce017e7d33
container_end_page 2833
container_issue 7
container_start_page 2819
container_title IEEE transactions on vehicular technology
container_volume 64
creator Iqbal, Naveed
Al-Dhahir, Naofal
Zerguine, Azzedine
Zidouri, Abdelmalek
description It is well known that, in the case of highly frequency-selective fading channels, the linear equalizer (LE) can suffer significant performance degradation compared with the decision feedback equalizer (DFE). In this paper, we develop a low-complexity adaptive frequency-domain DFE (AFD-DFE) for single-carrier frequency-division multiple-access (SC-FDMA) systems, where both the feedforward and feedback filters operate in the frequency domain and are adapted using the well-known block recursive least squares (RLS) algorithm. Since this DFE operates entirely in the frequency domain, the complexity of the block RLS algorithm can be substantially reduced when compared with its time-domain counterpart by exploiting a matrix structure in the frequency domain. Furthermore, we extend our formulation to multiple-input-multiple-output (MIMO) SC-FDMA systems, where we show that the AFD-DFE enjoys a significant reduction in computational complexity when compared with the frequency-domain nonadaptive DFE. Finally, extensive simulations are carried out to demonstrate the robustness of our proposed AFD-DFE to high Doppler and carrier frequency offset (CFO).
doi_str_mv 10.1109/TVT.2014.2349955
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1696999779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6880832</ieee_id><sourcerecordid>3746381961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-76b9995a81e8967a341528e17d01dcabec395117d5b24b0f3bd28e8ce017e7d33</originalsourceid><addsrcrecordid>eNo9kFFrwjAUhcPYYM7tfbCXwJ7jcpukzX0UtZtQEabuNaRtCnXadqkO_PeLKHu6HO459x4-Qp6BjwA4vq2_1qOIgxxFQiIqdUMGgAIZCoW3ZMA5aIZKqnvy0PfbIKVEGBAcl7Y71L-Opt79HF1TnNi03du6oZ_Zik7TGa1aTzfdrm6-6WK-WNLVhKXTxfiR3FV217un6xySTTpbTz5YtnyfT8YZKyKEA0viHEMfq8FpjBMrJKhIO0hKDmVhc1cIVBCkyiOZ80rkZVjrwnFIXFIKMSSvl7udb0PB_mC27dE34aWBGONwPEkwuPjFVfi2772rTOfrvfUnA9ycAZkAyJwBmSugEHm5RGrn3L891pprEYk_Kuhd8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1696999779</pqid></control><display><type>article</type><title>Adaptive Frequency-Domain RLS DFE for Uplink MIMO SC-FDMA</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Iqbal, Naveed ; Al-Dhahir, Naofal ; Zerguine, Azzedine ; Zidouri, Abdelmalek</creator><creatorcontrib>Iqbal, Naveed ; Al-Dhahir, Naofal ; Zerguine, Azzedine ; Zidouri, Abdelmalek</creatorcontrib><description>It is well known that, in the case of highly frequency-selective fading channels, the linear equalizer (LE) can suffer significant performance degradation compared with the decision feedback equalizer (DFE). In this paper, we develop a low-complexity adaptive frequency-domain DFE (AFD-DFE) for single-carrier frequency-division multiple-access (SC-FDMA) systems, where both the feedforward and feedback filters operate in the frequency domain and are adapted using the well-known block recursive least squares (RLS) algorithm. Since this DFE operates entirely in the frequency domain, the complexity of the block RLS algorithm can be substantially reduced when compared with its time-domain counterpart by exploiting a matrix structure in the frequency domain. Furthermore, we extend our formulation to multiple-input-multiple-output (MIMO) SC-FDMA systems, where we show that the AFD-DFE enjoys a significant reduction in computational complexity when compared with the frequency-domain nonadaptive DFE. Finally, extensive simulations are carried out to demonstrate the robustness of our proposed AFD-DFE to high Doppler and carrier frequency offset (CFO).</description><identifier>ISSN: 0018-9545</identifier><identifier>EISSN: 1939-9359</identifier><identifier>DOI: 10.1109/TVT.2014.2349955</identifier><identifier>CODEN: ITVTAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Complexity theory ; Decision feedback equalizers ; Discrete Fourier transforms ; Feedforward neural networks ; Frequency-domain analysis ; MIMO</subject><ispartof>IEEE transactions on vehicular technology, 2015-07, Vol.64 (7), p.2819-2833</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-76b9995a81e8967a341528e17d01dcabec395117d5b24b0f3bd28e8ce017e7d33</citedby><cites>FETCH-LOGICAL-c291t-76b9995a81e8967a341528e17d01dcabec395117d5b24b0f3bd28e8ce017e7d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6880832$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,54787</link.rule.ids></links><search><creatorcontrib>Iqbal, Naveed</creatorcontrib><creatorcontrib>Al-Dhahir, Naofal</creatorcontrib><creatorcontrib>Zerguine, Azzedine</creatorcontrib><creatorcontrib>Zidouri, Abdelmalek</creatorcontrib><title>Adaptive Frequency-Domain RLS DFE for Uplink MIMO SC-FDMA</title><title>IEEE transactions on vehicular technology</title><addtitle>TVT</addtitle><description>It is well known that, in the case of highly frequency-selective fading channels, the linear equalizer (LE) can suffer significant performance degradation compared with the decision feedback equalizer (DFE). In this paper, we develop a low-complexity adaptive frequency-domain DFE (AFD-DFE) for single-carrier frequency-division multiple-access (SC-FDMA) systems, where both the feedforward and feedback filters operate in the frequency domain and are adapted using the well-known block recursive least squares (RLS) algorithm. Since this DFE operates entirely in the frequency domain, the complexity of the block RLS algorithm can be substantially reduced when compared with its time-domain counterpart by exploiting a matrix structure in the frequency domain. Furthermore, we extend our formulation to multiple-input-multiple-output (MIMO) SC-FDMA systems, where we show that the AFD-DFE enjoys a significant reduction in computational complexity when compared with the frequency-domain nonadaptive DFE. Finally, extensive simulations are carried out to demonstrate the robustness of our proposed AFD-DFE to high Doppler and carrier frequency offset (CFO).</description><subject>Complexity theory</subject><subject>Decision feedback equalizers</subject><subject>Discrete Fourier transforms</subject><subject>Feedforward neural networks</subject><subject>Frequency-domain analysis</subject><subject>MIMO</subject><issn>0018-9545</issn><issn>1939-9359</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kFFrwjAUhcPYYM7tfbCXwJ7jcpukzX0UtZtQEabuNaRtCnXadqkO_PeLKHu6HO459x4-Qp6BjwA4vq2_1qOIgxxFQiIqdUMGgAIZCoW3ZMA5aIZKqnvy0PfbIKVEGBAcl7Y71L-Opt79HF1TnNi03du6oZ_Zik7TGa1aTzfdrm6-6WK-WNLVhKXTxfiR3FV217un6xySTTpbTz5YtnyfT8YZKyKEA0viHEMfq8FpjBMrJKhIO0hKDmVhc1cIVBCkyiOZ80rkZVjrwnFIXFIKMSSvl7udb0PB_mC27dE34aWBGONwPEkwuPjFVfi2772rTOfrvfUnA9ycAZkAyJwBmSugEHm5RGrn3L891pprEYk_Kuhd8g</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Iqbal, Naveed</creator><creator>Al-Dhahir, Naofal</creator><creator>Zerguine, Azzedine</creator><creator>Zidouri, Abdelmalek</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20150701</creationdate><title>Adaptive Frequency-Domain RLS DFE for Uplink MIMO SC-FDMA</title><author>Iqbal, Naveed ; Al-Dhahir, Naofal ; Zerguine, Azzedine ; Zidouri, Abdelmalek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-76b9995a81e8967a341528e17d01dcabec395117d5b24b0f3bd28e8ce017e7d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Complexity theory</topic><topic>Decision feedback equalizers</topic><topic>Discrete Fourier transforms</topic><topic>Feedforward neural networks</topic><topic>Frequency-domain analysis</topic><topic>MIMO</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iqbal, Naveed</creatorcontrib><creatorcontrib>Al-Dhahir, Naofal</creatorcontrib><creatorcontrib>Zerguine, Azzedine</creatorcontrib><creatorcontrib>Zidouri, Abdelmalek</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on vehicular technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iqbal, Naveed</au><au>Al-Dhahir, Naofal</au><au>Zerguine, Azzedine</au><au>Zidouri, Abdelmalek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Frequency-Domain RLS DFE for Uplink MIMO SC-FDMA</atitle><jtitle>IEEE transactions on vehicular technology</jtitle><stitle>TVT</stitle><date>2015-07-01</date><risdate>2015</risdate><volume>64</volume><issue>7</issue><spage>2819</spage><epage>2833</epage><pages>2819-2833</pages><issn>0018-9545</issn><eissn>1939-9359</eissn><coden>ITVTAB</coden><abstract>It is well known that, in the case of highly frequency-selective fading channels, the linear equalizer (LE) can suffer significant performance degradation compared with the decision feedback equalizer (DFE). In this paper, we develop a low-complexity adaptive frequency-domain DFE (AFD-DFE) for single-carrier frequency-division multiple-access (SC-FDMA) systems, where both the feedforward and feedback filters operate in the frequency domain and are adapted using the well-known block recursive least squares (RLS) algorithm. Since this DFE operates entirely in the frequency domain, the complexity of the block RLS algorithm can be substantially reduced when compared with its time-domain counterpart by exploiting a matrix structure in the frequency domain. Furthermore, we extend our formulation to multiple-input-multiple-output (MIMO) SC-FDMA systems, where we show that the AFD-DFE enjoys a significant reduction in computational complexity when compared with the frequency-domain nonadaptive DFE. Finally, extensive simulations are carried out to demonstrate the robustness of our proposed AFD-DFE to high Doppler and carrier frequency offset (CFO).</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TVT.2014.2349955</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9545
ispartof IEEE transactions on vehicular technology, 2015-07, Vol.64 (7), p.2819-2833
issn 0018-9545
1939-9359
language eng
recordid cdi_proquest_journals_1696999779
source IEEE Electronic Library (IEL) Journals
subjects Complexity theory
Decision feedback equalizers
Discrete Fourier transforms
Feedforward neural networks
Frequency-domain analysis
MIMO
title Adaptive Frequency-Domain RLS DFE for Uplink MIMO SC-FDMA
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A48%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Frequency-Domain%20RLS%20DFE%20for%20Uplink%20MIMO%20SC-FDMA&rft.jtitle=IEEE%20transactions%20on%20vehicular%20technology&rft.au=Iqbal,%20Naveed&rft.date=2015-07-01&rft.volume=64&rft.issue=7&rft.spage=2819&rft.epage=2833&rft.pages=2819-2833&rft.issn=0018-9545&rft.eissn=1939-9359&rft.coden=ITVTAB&rft_id=info:doi/10.1109/TVT.2014.2349955&rft_dat=%3Cproquest_cross%3E3746381961%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-76b9995a81e8967a341528e17d01dcabec395117d5b24b0f3bd28e8ce017e7d33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1696999779&rft_id=info:pmid/&rft_ieee_id=6880832&rfr_iscdi=true