Loading…

The Mahalanobis Distance for Functional Data With Applications to Classification

This article presents a new semidistance for functional observations that generalizes the Mahalanobis distance for multivariate datasets. The main characteristics of the functional Mahalanobis semidistance are shown. To illustrate the applicability of this measure of proximity between functional obs...

Full description

Saved in:
Bibliographic Details
Published in:Technometrics 2015-04, Vol.57 (2), p.281-291
Main Authors: Galeano, Pedro, Joseph, Esdras, Lillo, Rosa E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c403t-c6ec042d0cdef89458993c392365d6658cb1a8d689711cc9f1204f71626d6ce23
cites cdi_FETCH-LOGICAL-c403t-c6ec042d0cdef89458993c392365d6658cb1a8d689711cc9f1204f71626d6ce23
container_end_page 291
container_issue 2
container_start_page 281
container_title Technometrics
container_volume 57
creator Galeano, Pedro
Joseph, Esdras
Lillo, Rosa E.
description This article presents a new semidistance for functional observations that generalizes the Mahalanobis distance for multivariate datasets. The main characteristics of the functional Mahalanobis semidistance are shown. To illustrate the applicability of this measure of proximity between functional observations, new versions of several well-known functional classification procedures are developed using the functional Mahalanobis semidistance. A Monte Carlo study and the analysis of two real examples indicate that the classification methods used in conjunction with the functional Mahalanobis semidistance give better results than other well-known functional classification procedures. This article has supplementary material online.
doi_str_mv 10.1080/00401706.2014.902774
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1697516964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24587309</jstor_id><sourcerecordid>24587309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-c6ec042d0cdef89458993c392365d6658cb1a8d689711cc9f1204f71626d6ce23</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKvfQCHgeevkzyabk5RqVajooeIxpNldmrLd1CRF-u3dZatHLzMw772Z4YfQNYEJgQLuADgQCWJCgfCJAiolP0EjkjOZUUnZKRr1lqz3nKOLGDcAhNFCjtD7cl3hV7M2jWn9ykX84GIyra1w7QOe71ubnG9Ngx9MMvjTpTWe7naNs6afR5w8njUmRlcfR5forDZNrK6OfYw-5o_L2XO2eHt6mU0XmeXAUmZFZYHTEmxZ1YXieaEUs0xRJvJSiLywK2KKUhRKEmKtqgkFXksiqCiFrSgbo9th7y74r30Vk974feg-jZoIJfOuCN65-OCywccYqlrvgtuacNAEdM9O_7LTPTs9sOtiN0NsE5MPfxnavSkZqE6_H3TXdpi25tuHptTJHBof6tDhc1Gzfy_8APWLfcs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1697516964</pqid></control><display><type>article</type><title>The Mahalanobis Distance for Functional Data With Applications to Classification</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Taylor and Francis Science and Technology Collection</source><creator>Galeano, Pedro ; Joseph, Esdras ; Lillo, Rosa E.</creator><creatorcontrib>Galeano, Pedro ; Joseph, Esdras ; Lillo, Rosa E.</creatorcontrib><description>This article presents a new semidistance for functional observations that generalizes the Mahalanobis distance for multivariate datasets. The main characteristics of the functional Mahalanobis semidistance are shown. To illustrate the applicability of this measure of proximity between functional observations, new versions of several well-known functional classification procedures are developed using the functional Mahalanobis semidistance. A Monte Carlo study and the analysis of two real examples indicate that the classification methods used in conjunction with the functional Mahalanobis semidistance give better results than other well-known functional classification procedures. This article has supplementary material online.</description><identifier>ISSN: 0040-1706</identifier><identifier>EISSN: 1537-2723</identifier><identifier>DOI: 10.1080/00401706.2014.902774</identifier><identifier>CODEN: TCMTA2</identifier><language>eng</language><publisher>Alexandria: Taylor &amp; Francis</publisher><subject>Classification ; Classification methods ; Functional data analysis ; Functional Mahalanobis semidistance ; Functional principal components ; Monte Carlo simulation ; Multivariate analysis</subject><ispartof>Technometrics, 2015-04, Vol.57 (2), p.281-291</ispartof><rights>Copyright © American Statistical Association and the American Society for Quality 2015</rights><rights>2015 American Statistical Association and the American Society for Quality</rights><rights>Copyright Taylor &amp; Francis Ltd. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-c6ec042d0cdef89458993c392365d6658cb1a8d689711cc9f1204f71626d6ce23</citedby><cites>FETCH-LOGICAL-c403t-c6ec042d0cdef89458993c392365d6658cb1a8d689711cc9f1204f71626d6ce23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24587309$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24587309$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Galeano, Pedro</creatorcontrib><creatorcontrib>Joseph, Esdras</creatorcontrib><creatorcontrib>Lillo, Rosa E.</creatorcontrib><title>The Mahalanobis Distance for Functional Data With Applications to Classification</title><title>Technometrics</title><description>This article presents a new semidistance for functional observations that generalizes the Mahalanobis distance for multivariate datasets. The main characteristics of the functional Mahalanobis semidistance are shown. To illustrate the applicability of this measure of proximity between functional observations, new versions of several well-known functional classification procedures are developed using the functional Mahalanobis semidistance. A Monte Carlo study and the analysis of two real examples indicate that the classification methods used in conjunction with the functional Mahalanobis semidistance give better results than other well-known functional classification procedures. This article has supplementary material online.</description><subject>Classification</subject><subject>Classification methods</subject><subject>Functional data analysis</subject><subject>Functional Mahalanobis semidistance</subject><subject>Functional principal components</subject><subject>Monte Carlo simulation</subject><subject>Multivariate analysis</subject><issn>0040-1706</issn><issn>1537-2723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKvfQCHgeevkzyabk5RqVajooeIxpNldmrLd1CRF-u3dZatHLzMw772Z4YfQNYEJgQLuADgQCWJCgfCJAiolP0EjkjOZUUnZKRr1lqz3nKOLGDcAhNFCjtD7cl3hV7M2jWn9ykX84GIyra1w7QOe71ubnG9Ngx9MMvjTpTWe7naNs6afR5w8njUmRlcfR5forDZNrK6OfYw-5o_L2XO2eHt6mU0XmeXAUmZFZYHTEmxZ1YXieaEUs0xRJvJSiLywK2KKUhRKEmKtqgkFXksiqCiFrSgbo9th7y74r30Vk974feg-jZoIJfOuCN65-OCywccYqlrvgtuacNAEdM9O_7LTPTs9sOtiN0NsE5MPfxnavSkZqE6_H3TXdpi25tuHptTJHBof6tDhc1Gzfy_8APWLfcs</recordid><startdate>20150403</startdate><enddate>20150403</enddate><creator>Galeano, Pedro</creator><creator>Joseph, Esdras</creator><creator>Lillo, Rosa E.</creator><general>Taylor &amp; Francis</general><general>American Society for Quality and the American Statistical Association</general><general>American Society for Quality</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150403</creationdate><title>The Mahalanobis Distance for Functional Data With Applications to Classification</title><author>Galeano, Pedro ; Joseph, Esdras ; Lillo, Rosa E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-c6ec042d0cdef89458993c392365d6658cb1a8d689711cc9f1204f71626d6ce23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Classification</topic><topic>Classification methods</topic><topic>Functional data analysis</topic><topic>Functional Mahalanobis semidistance</topic><topic>Functional principal components</topic><topic>Monte Carlo simulation</topic><topic>Multivariate analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galeano, Pedro</creatorcontrib><creatorcontrib>Joseph, Esdras</creatorcontrib><creatorcontrib>Lillo, Rosa E.</creatorcontrib><collection>CrossRef</collection><jtitle>Technometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galeano, Pedro</au><au>Joseph, Esdras</au><au>Lillo, Rosa E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Mahalanobis Distance for Functional Data With Applications to Classification</atitle><jtitle>Technometrics</jtitle><date>2015-04-03</date><risdate>2015</risdate><volume>57</volume><issue>2</issue><spage>281</spage><epage>291</epage><pages>281-291</pages><issn>0040-1706</issn><eissn>1537-2723</eissn><coden>TCMTA2</coden><abstract>This article presents a new semidistance for functional observations that generalizes the Mahalanobis distance for multivariate datasets. The main characteristics of the functional Mahalanobis semidistance are shown. To illustrate the applicability of this measure of proximity between functional observations, new versions of several well-known functional classification procedures are developed using the functional Mahalanobis semidistance. A Monte Carlo study and the analysis of two real examples indicate that the classification methods used in conjunction with the functional Mahalanobis semidistance give better results than other well-known functional classification procedures. This article has supplementary material online.</abstract><cop>Alexandria</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/00401706.2014.902774</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0040-1706
ispartof Technometrics, 2015-04, Vol.57 (2), p.281-291
issn 0040-1706
1537-2723
language eng
recordid cdi_proquest_journals_1697516964
source JSTOR Archival Journals and Primary Sources Collection; Taylor and Francis Science and Technology Collection
subjects Classification
Classification methods
Functional data analysis
Functional Mahalanobis semidistance
Functional principal components
Monte Carlo simulation
Multivariate analysis
title The Mahalanobis Distance for Functional Data With Applications to Classification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A21%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Mahalanobis%20Distance%20for%20Functional%20Data%20With%20Applications%20to%20Classification&rft.jtitle=Technometrics&rft.au=Galeano,%20Pedro&rft.date=2015-04-03&rft.volume=57&rft.issue=2&rft.spage=281&rft.epage=291&rft.pages=281-291&rft.issn=0040-1706&rft.eissn=1537-2723&rft.coden=TCMTA2&rft_id=info:doi/10.1080/00401706.2014.902774&rft_dat=%3Cjstor_proqu%3E24587309%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-c6ec042d0cdef89458993c392365d6658cb1a8d689711cc9f1204f71626d6ce23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1697516964&rft_id=info:pmid/&rft_jstor_id=24587309&rfr_iscdi=true