Loading…
The Mahalanobis Distance for Functional Data With Applications to Classification
This article presents a new semidistance for functional observations that generalizes the Mahalanobis distance for multivariate datasets. The main characteristics of the functional Mahalanobis semidistance are shown. To illustrate the applicability of this measure of proximity between functional obs...
Saved in:
Published in: | Technometrics 2015-04, Vol.57 (2), p.281-291 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c403t-c6ec042d0cdef89458993c392365d6658cb1a8d689711cc9f1204f71626d6ce23 |
---|---|
cites | cdi_FETCH-LOGICAL-c403t-c6ec042d0cdef89458993c392365d6658cb1a8d689711cc9f1204f71626d6ce23 |
container_end_page | 291 |
container_issue | 2 |
container_start_page | 281 |
container_title | Technometrics |
container_volume | 57 |
creator | Galeano, Pedro Joseph, Esdras Lillo, Rosa E. |
description | This article presents a new semidistance for functional observations that generalizes the Mahalanobis distance for multivariate datasets. The main characteristics of the functional Mahalanobis semidistance are shown. To illustrate the applicability of this measure of proximity between functional observations, new versions of several well-known functional classification procedures are developed using the functional Mahalanobis semidistance. A Monte Carlo study and the analysis of two real examples indicate that the classification methods used in conjunction with the functional Mahalanobis semidistance give better results than other well-known functional classification procedures. This article has supplementary material online. |
doi_str_mv | 10.1080/00401706.2014.902774 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1697516964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24587309</jstor_id><sourcerecordid>24587309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-c6ec042d0cdef89458993c392365d6658cb1a8d689711cc9f1204f71626d6ce23</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKvfQCHgeevkzyabk5RqVajooeIxpNldmrLd1CRF-u3dZatHLzMw772Z4YfQNYEJgQLuADgQCWJCgfCJAiolP0EjkjOZUUnZKRr1lqz3nKOLGDcAhNFCjtD7cl3hV7M2jWn9ykX84GIyra1w7QOe71ubnG9Ngx9MMvjTpTWe7naNs6afR5w8njUmRlcfR5forDZNrK6OfYw-5o_L2XO2eHt6mU0XmeXAUmZFZYHTEmxZ1YXieaEUs0xRJvJSiLywK2KKUhRKEmKtqgkFXksiqCiFrSgbo9th7y74r30Vk974feg-jZoIJfOuCN65-OCywccYqlrvgtuacNAEdM9O_7LTPTs9sOtiN0NsE5MPfxnavSkZqE6_H3TXdpi25tuHptTJHBof6tDhc1Gzfy_8APWLfcs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1697516964</pqid></control><display><type>article</type><title>The Mahalanobis Distance for Functional Data With Applications to Classification</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Taylor and Francis Science and Technology Collection</source><creator>Galeano, Pedro ; Joseph, Esdras ; Lillo, Rosa E.</creator><creatorcontrib>Galeano, Pedro ; Joseph, Esdras ; Lillo, Rosa E.</creatorcontrib><description>This article presents a new semidistance for functional observations that generalizes the Mahalanobis distance for multivariate datasets. The main characteristics of the functional Mahalanobis semidistance are shown. To illustrate the applicability of this measure of proximity between functional observations, new versions of several well-known functional classification procedures are developed using the functional Mahalanobis semidistance. A Monte Carlo study and the analysis of two real examples indicate that the classification methods used in conjunction with the functional Mahalanobis semidistance give better results than other well-known functional classification procedures. This article has supplementary material online.</description><identifier>ISSN: 0040-1706</identifier><identifier>EISSN: 1537-2723</identifier><identifier>DOI: 10.1080/00401706.2014.902774</identifier><identifier>CODEN: TCMTA2</identifier><language>eng</language><publisher>Alexandria: Taylor & Francis</publisher><subject>Classification ; Classification methods ; Functional data analysis ; Functional Mahalanobis semidistance ; Functional principal components ; Monte Carlo simulation ; Multivariate analysis</subject><ispartof>Technometrics, 2015-04, Vol.57 (2), p.281-291</ispartof><rights>Copyright © American Statistical Association and the American Society for Quality 2015</rights><rights>2015 American Statistical Association and the American Society for Quality</rights><rights>Copyright Taylor & Francis Ltd. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-c6ec042d0cdef89458993c392365d6658cb1a8d689711cc9f1204f71626d6ce23</citedby><cites>FETCH-LOGICAL-c403t-c6ec042d0cdef89458993c392365d6658cb1a8d689711cc9f1204f71626d6ce23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24587309$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24587309$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Galeano, Pedro</creatorcontrib><creatorcontrib>Joseph, Esdras</creatorcontrib><creatorcontrib>Lillo, Rosa E.</creatorcontrib><title>The Mahalanobis Distance for Functional Data With Applications to Classification</title><title>Technometrics</title><description>This article presents a new semidistance for functional observations that generalizes the Mahalanobis distance for multivariate datasets. The main characteristics of the functional Mahalanobis semidistance are shown. To illustrate the applicability of this measure of proximity between functional observations, new versions of several well-known functional classification procedures are developed using the functional Mahalanobis semidistance. A Monte Carlo study and the analysis of two real examples indicate that the classification methods used in conjunction with the functional Mahalanobis semidistance give better results than other well-known functional classification procedures. This article has supplementary material online.</description><subject>Classification</subject><subject>Classification methods</subject><subject>Functional data analysis</subject><subject>Functional Mahalanobis semidistance</subject><subject>Functional principal components</subject><subject>Monte Carlo simulation</subject><subject>Multivariate analysis</subject><issn>0040-1706</issn><issn>1537-2723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKvfQCHgeevkzyabk5RqVajooeIxpNldmrLd1CRF-u3dZatHLzMw772Z4YfQNYEJgQLuADgQCWJCgfCJAiolP0EjkjOZUUnZKRr1lqz3nKOLGDcAhNFCjtD7cl3hV7M2jWn9ykX84GIyra1w7QOe71ubnG9Ngx9MMvjTpTWe7naNs6afR5w8njUmRlcfR5forDZNrK6OfYw-5o_L2XO2eHt6mU0XmeXAUmZFZYHTEmxZ1YXieaEUs0xRJvJSiLywK2KKUhRKEmKtqgkFXksiqCiFrSgbo9th7y74r30Vk974feg-jZoIJfOuCN65-OCywccYqlrvgtuacNAEdM9O_7LTPTs9sOtiN0NsE5MPfxnavSkZqE6_H3TXdpi25tuHptTJHBof6tDhc1Gzfy_8APWLfcs</recordid><startdate>20150403</startdate><enddate>20150403</enddate><creator>Galeano, Pedro</creator><creator>Joseph, Esdras</creator><creator>Lillo, Rosa E.</creator><general>Taylor & Francis</general><general>American Society for Quality and the American Statistical Association</general><general>American Society for Quality</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150403</creationdate><title>The Mahalanobis Distance for Functional Data With Applications to Classification</title><author>Galeano, Pedro ; Joseph, Esdras ; Lillo, Rosa E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-c6ec042d0cdef89458993c392365d6658cb1a8d689711cc9f1204f71626d6ce23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Classification</topic><topic>Classification methods</topic><topic>Functional data analysis</topic><topic>Functional Mahalanobis semidistance</topic><topic>Functional principal components</topic><topic>Monte Carlo simulation</topic><topic>Multivariate analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galeano, Pedro</creatorcontrib><creatorcontrib>Joseph, Esdras</creatorcontrib><creatorcontrib>Lillo, Rosa E.</creatorcontrib><collection>CrossRef</collection><jtitle>Technometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galeano, Pedro</au><au>Joseph, Esdras</au><au>Lillo, Rosa E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Mahalanobis Distance for Functional Data With Applications to Classification</atitle><jtitle>Technometrics</jtitle><date>2015-04-03</date><risdate>2015</risdate><volume>57</volume><issue>2</issue><spage>281</spage><epage>291</epage><pages>281-291</pages><issn>0040-1706</issn><eissn>1537-2723</eissn><coden>TCMTA2</coden><abstract>This article presents a new semidistance for functional observations that generalizes the Mahalanobis distance for multivariate datasets. The main characteristics of the functional Mahalanobis semidistance are shown. To illustrate the applicability of this measure of proximity between functional observations, new versions of several well-known functional classification procedures are developed using the functional Mahalanobis semidistance. A Monte Carlo study and the analysis of two real examples indicate that the classification methods used in conjunction with the functional Mahalanobis semidistance give better results than other well-known functional classification procedures. This article has supplementary material online.</abstract><cop>Alexandria</cop><pub>Taylor & Francis</pub><doi>10.1080/00401706.2014.902774</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-1706 |
ispartof | Technometrics, 2015-04, Vol.57 (2), p.281-291 |
issn | 0040-1706 1537-2723 |
language | eng |
recordid | cdi_proquest_journals_1697516964 |
source | JSTOR Archival Journals and Primary Sources Collection; Taylor and Francis Science and Technology Collection |
subjects | Classification Classification methods Functional data analysis Functional Mahalanobis semidistance Functional principal components Monte Carlo simulation Multivariate analysis |
title | The Mahalanobis Distance for Functional Data With Applications to Classification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A21%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Mahalanobis%20Distance%20for%20Functional%20Data%20With%20Applications%20to%20Classification&rft.jtitle=Technometrics&rft.au=Galeano,%20Pedro&rft.date=2015-04-03&rft.volume=57&rft.issue=2&rft.spage=281&rft.epage=291&rft.pages=281-291&rft.issn=0040-1706&rft.eissn=1537-2723&rft.coden=TCMTA2&rft_id=info:doi/10.1080/00401706.2014.902774&rft_dat=%3Cjstor_proqu%3E24587309%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-c6ec042d0cdef89458993c392365d6658cb1a8d689711cc9f1204f71626d6ce23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1697516964&rft_id=info:pmid/&rft_jstor_id=24587309&rfr_iscdi=true |