Loading…
Midtropospheric frontogenesis associated with antecedent indirect precipitation ahead of tropical cyclones over the Korean Peninsula
On the Korean Peninsula (KP), heavy rainfall often precedes the landfall of a tropical cyclone (TC). This rainfall is called antecedent indirect precipitation (AIP), because it occurs well beyond the effective radius of the TC. The present study examines the statistical characteristics and physical...
Saved in:
Published in: | Tellus. Series A, Dynamic meteorology and oceanography Dynamic meteorology and oceanography, 2015-01, Vol.67 (1), p.27476-19 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | On the Korean Peninsula (KP), heavy rainfall often precedes the landfall of a tropical cyclone (TC). This rainfall is called antecedent indirect precipitation (AIP), because it occurs well beyond the effective radius of the TC. The present study examines the statistical characteristics and physical mechanism of the AIP produced by TCs that influenced the KP during the period 1993-2004. Composite analyses demonstrate that the AIP events were accompanied by midtropospheric frontogenesis due to the TC-mid-latitude environment interaction. When an approaching TC encountered an approaching mid-latitude upper-level trough, this encounter resulted in confluent and deformed flows at the mid-level by the combination of westerlies from the trough and southerlies from the TC. The delicate balance of horizontal winds related to the two systems at the mid-level led to the midtropospheric frontogenesis to the north of the KP. The frontogenetic feature related to the AIP was in marked contrast to those of the remote rainfall event over the KP and the predecessor rainfall event over the United States suggested by previous studies. Quasi-geostrophic analysis demonstrates that the midtropospheric front induced thermally direct circulation, which led to ascending motion over the KP. Consequently, the midtropospheric front helped to intensify the AIP, together with the convective instability that was amplified by the transport of warm and moist air along the conduit between the TC and subtropical high. |
---|---|
ISSN: | 1600-0870 1600-0870 |
DOI: | 10.3402/tellusa.v67.27476 |