Loading…

Absence of Jahn-Teller transition in the hexagonal Ba^sub 3^CuSb^sub 2^O^sub 9^ single crystal

With decreasing temperature, liquids generally freeze into a solid state, losing entropy in the process. However, exceptions to this trend exist, such as quantum liquids, which may remain unfrozen down to absolute zero owing to strong quantum entanglement effects that stabilize a disordered state wi...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2015-07, Vol.112 (30), p.9305
Main Authors: Katayama, Naoyuki, Kimura, Kenta, Han, Yibo, Nasu, Joji, Drichko, Natalia, Nakanishi, Yoshiki, Halim, Mario, Ishiguro, Yuki, Satake, Ryuta, Nishibori, Eiji, Yoshizawa, Masahito, Nakano, Takehito, Nozue, Yasuo, Wakabayashi, Yusuke, Ishihara, Sumio, Hagiwara, Masayuki, Sawa, Hiroshi, Nakatsuji, Satoru
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 30
container_start_page 9305
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 112
creator Katayama, Naoyuki
Kimura, Kenta
Han, Yibo
Nasu, Joji
Drichko, Natalia
Nakanishi, Yoshiki
Halim, Mario
Ishiguro, Yuki
Satake, Ryuta
Nishibori, Eiji
Yoshizawa, Masahito
Nakano, Takehito
Nozue, Yasuo
Wakabayashi, Yusuke
Ishihara, Sumio
Hagiwara, Masayuki
Sawa, Hiroshi
Nakatsuji, Satoru
description With decreasing temperature, liquids generally freeze into a solid state, losing entropy in the process. However, exceptions to this trend exist, such as quantum liquids, which may remain unfrozen down to absolute zero owing to strong quantum entanglement effects that stabilize a disordered state with zero entropy. Examples of such liquids include Bose-Einstein condensation of cold atoms, superconductivity, quantum Hall state of electron systems, and quantum spin liquid state in the frustrated magnets. Moreover, recent studies have clarified the possibility of another exotic quantum liquid state based on the spin-orbital entanglement in ... To confirm this exotic ground state, experiments based on single-crystalline samples are essential. However, no such single-crystal study has been reported to date. Here, we report, to our knowledge, the first single-crystal study on the spin-orbital liquid candidate, ..., and we have confirmed the absence of an orbital frozen state. In strongly correlated electron systems, orbital ordering usually appears at high temperatures in a process accompanied by a lattice deformation, called a static Jahn-Teller distortion. By combining synchrotron X-ray diffraction, electron spin resonance, Raman spectroscopy, and ultrasound measurements, we find that the static Jahn-Teller distortion is absent in the present material, which indicates that orbital ordering is suppressed down to the lowest temperatures measured. We discuss how such an unusual feature is realized with the help of spin degree of freedom, leading to a spin-orbital entangled quantum liquid state. (ProQuest: ... denotes formulae/symbols omitted.)
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_1701284957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3767732461</sourcerecordid><originalsourceid>FETCH-proquest_journals_17012849573</originalsourceid><addsrcrecordid>eNqNjMsKwjAQAIMoWB__sOC5sK2tbY4qinjxoOdIKltbCYlmU9C_V8QP8DRzGKYnogRlEi8yiX0RIaZFXGZpNhQj5hsiyrzESKhlxWQvBK6GvW5sfCJjyEPw2nIbWmehtRAagoae-uqsNrDSirsK5mrdHauvpurwpVTArb0agot_cdBmIga1NkzTH8ditt2c1rv47t2jIw7nm-v8Z8rnpMAkLTOZF_P_qjfKS0RD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1701284957</pqid></control><display><type>article</type><title>Absence of Jahn-Teller transition in the hexagonal Ba^sub 3^CuSb^sub 2^O^sub 9^ single crystal</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Katayama, Naoyuki ; Kimura, Kenta ; Han, Yibo ; Nasu, Joji ; Drichko, Natalia ; Nakanishi, Yoshiki ; Halim, Mario ; Ishiguro, Yuki ; Satake, Ryuta ; Nishibori, Eiji ; Yoshizawa, Masahito ; Nakano, Takehito ; Nozue, Yasuo ; Wakabayashi, Yusuke ; Ishihara, Sumio ; Hagiwara, Masayuki ; Sawa, Hiroshi ; Nakatsuji, Satoru</creator><creatorcontrib>Katayama, Naoyuki ; Kimura, Kenta ; Han, Yibo ; Nasu, Joji ; Drichko, Natalia ; Nakanishi, Yoshiki ; Halim, Mario ; Ishiguro, Yuki ; Satake, Ryuta ; Nishibori, Eiji ; Yoshizawa, Masahito ; Nakano, Takehito ; Nozue, Yasuo ; Wakabayashi, Yusuke ; Ishihara, Sumio ; Hagiwara, Masayuki ; Sawa, Hiroshi ; Nakatsuji, Satoru</creatorcontrib><description>With decreasing temperature, liquids generally freeze into a solid state, losing entropy in the process. However, exceptions to this trend exist, such as quantum liquids, which may remain unfrozen down to absolute zero owing to strong quantum entanglement effects that stabilize a disordered state with zero entropy. Examples of such liquids include Bose-Einstein condensation of cold atoms, superconductivity, quantum Hall state of electron systems, and quantum spin liquid state in the frustrated magnets. Moreover, recent studies have clarified the possibility of another exotic quantum liquid state based on the spin-orbital entanglement in ... To confirm this exotic ground state, experiments based on single-crystalline samples are essential. However, no such single-crystal study has been reported to date. Here, we report, to our knowledge, the first single-crystal study on the spin-orbital liquid candidate, ..., and we have confirmed the absence of an orbital frozen state. In strongly correlated electron systems, orbital ordering usually appears at high temperatures in a process accompanied by a lattice deformation, called a static Jahn-Teller distortion. By combining synchrotron X-ray diffraction, electron spin resonance, Raman spectroscopy, and ultrasound measurements, we find that the static Jahn-Teller distortion is absent in the present material, which indicates that orbital ordering is suppressed down to the lowest temperatures measured. We discuss how such an unusual feature is realized with the help of spin degree of freedom, leading to a spin-orbital entangled quantum liquid state. (ProQuest: ... denotes formulae/symbols omitted.)</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><language>eng</language><publisher>Washington: National Academy of Sciences</publisher><subject>Absolute zero ; Condensation ; Correlation analysis ; Deformation ; Entropy ; Single crystals ; Superconductivity</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2015-07, Vol.112 (30), p.9305</ispartof><rights>Copyright National Academy of Sciences Jul 28, 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Katayama, Naoyuki</creatorcontrib><creatorcontrib>Kimura, Kenta</creatorcontrib><creatorcontrib>Han, Yibo</creatorcontrib><creatorcontrib>Nasu, Joji</creatorcontrib><creatorcontrib>Drichko, Natalia</creatorcontrib><creatorcontrib>Nakanishi, Yoshiki</creatorcontrib><creatorcontrib>Halim, Mario</creatorcontrib><creatorcontrib>Ishiguro, Yuki</creatorcontrib><creatorcontrib>Satake, Ryuta</creatorcontrib><creatorcontrib>Nishibori, Eiji</creatorcontrib><creatorcontrib>Yoshizawa, Masahito</creatorcontrib><creatorcontrib>Nakano, Takehito</creatorcontrib><creatorcontrib>Nozue, Yasuo</creatorcontrib><creatorcontrib>Wakabayashi, Yusuke</creatorcontrib><creatorcontrib>Ishihara, Sumio</creatorcontrib><creatorcontrib>Hagiwara, Masayuki</creatorcontrib><creatorcontrib>Sawa, Hiroshi</creatorcontrib><creatorcontrib>Nakatsuji, Satoru</creatorcontrib><title>Absence of Jahn-Teller transition in the hexagonal Ba^sub 3^CuSb^sub 2^O^sub 9^ single crystal</title><title>Proceedings of the National Academy of Sciences - PNAS</title><description>With decreasing temperature, liquids generally freeze into a solid state, losing entropy in the process. However, exceptions to this trend exist, such as quantum liquids, which may remain unfrozen down to absolute zero owing to strong quantum entanglement effects that stabilize a disordered state with zero entropy. Examples of such liquids include Bose-Einstein condensation of cold atoms, superconductivity, quantum Hall state of electron systems, and quantum spin liquid state in the frustrated magnets. Moreover, recent studies have clarified the possibility of another exotic quantum liquid state based on the spin-orbital entanglement in ... To confirm this exotic ground state, experiments based on single-crystalline samples are essential. However, no such single-crystal study has been reported to date. Here, we report, to our knowledge, the first single-crystal study on the spin-orbital liquid candidate, ..., and we have confirmed the absence of an orbital frozen state. In strongly correlated electron systems, orbital ordering usually appears at high temperatures in a process accompanied by a lattice deformation, called a static Jahn-Teller distortion. By combining synchrotron X-ray diffraction, electron spin resonance, Raman spectroscopy, and ultrasound measurements, we find that the static Jahn-Teller distortion is absent in the present material, which indicates that orbital ordering is suppressed down to the lowest temperatures measured. We discuss how such an unusual feature is realized with the help of spin degree of freedom, leading to a spin-orbital entangled quantum liquid state. (ProQuest: ... denotes formulae/symbols omitted.)</description><subject>Absolute zero</subject><subject>Condensation</subject><subject>Correlation analysis</subject><subject>Deformation</subject><subject>Entropy</subject><subject>Single crystals</subject><subject>Superconductivity</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNjMsKwjAQAIMoWB__sOC5sK2tbY4qinjxoOdIKltbCYlmU9C_V8QP8DRzGKYnogRlEi8yiX0RIaZFXGZpNhQj5hsiyrzESKhlxWQvBK6GvW5sfCJjyEPw2nIbWmehtRAagoae-uqsNrDSirsK5mrdHauvpurwpVTArb0agot_cdBmIga1NkzTH8ditt2c1rv47t2jIw7nm-v8Z8rnpMAkLTOZF_P_qjfKS0RD</recordid><startdate>20150728</startdate><enddate>20150728</enddate><creator>Katayama, Naoyuki</creator><creator>Kimura, Kenta</creator><creator>Han, Yibo</creator><creator>Nasu, Joji</creator><creator>Drichko, Natalia</creator><creator>Nakanishi, Yoshiki</creator><creator>Halim, Mario</creator><creator>Ishiguro, Yuki</creator><creator>Satake, Ryuta</creator><creator>Nishibori, Eiji</creator><creator>Yoshizawa, Masahito</creator><creator>Nakano, Takehito</creator><creator>Nozue, Yasuo</creator><creator>Wakabayashi, Yusuke</creator><creator>Ishihara, Sumio</creator><creator>Hagiwara, Masayuki</creator><creator>Sawa, Hiroshi</creator><creator>Nakatsuji, Satoru</creator><general>National Academy of Sciences</general><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20150728</creationdate><title>Absence of Jahn-Teller transition in the hexagonal Ba^sub 3^CuSb^sub 2^O^sub 9^ single crystal</title><author>Katayama, Naoyuki ; Kimura, Kenta ; Han, Yibo ; Nasu, Joji ; Drichko, Natalia ; Nakanishi, Yoshiki ; Halim, Mario ; Ishiguro, Yuki ; Satake, Ryuta ; Nishibori, Eiji ; Yoshizawa, Masahito ; Nakano, Takehito ; Nozue, Yasuo ; Wakabayashi, Yusuke ; Ishihara, Sumio ; Hagiwara, Masayuki ; Sawa, Hiroshi ; Nakatsuji, Satoru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_17012849573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Absolute zero</topic><topic>Condensation</topic><topic>Correlation analysis</topic><topic>Deformation</topic><topic>Entropy</topic><topic>Single crystals</topic><topic>Superconductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Katayama, Naoyuki</creatorcontrib><creatorcontrib>Kimura, Kenta</creatorcontrib><creatorcontrib>Han, Yibo</creatorcontrib><creatorcontrib>Nasu, Joji</creatorcontrib><creatorcontrib>Drichko, Natalia</creatorcontrib><creatorcontrib>Nakanishi, Yoshiki</creatorcontrib><creatorcontrib>Halim, Mario</creatorcontrib><creatorcontrib>Ishiguro, Yuki</creatorcontrib><creatorcontrib>Satake, Ryuta</creatorcontrib><creatorcontrib>Nishibori, Eiji</creatorcontrib><creatorcontrib>Yoshizawa, Masahito</creatorcontrib><creatorcontrib>Nakano, Takehito</creatorcontrib><creatorcontrib>Nozue, Yasuo</creatorcontrib><creatorcontrib>Wakabayashi, Yusuke</creatorcontrib><creatorcontrib>Ishihara, Sumio</creatorcontrib><creatorcontrib>Hagiwara, Masayuki</creatorcontrib><creatorcontrib>Sawa, Hiroshi</creatorcontrib><creatorcontrib>Nakatsuji, Satoru</creatorcontrib><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Katayama, Naoyuki</au><au>Kimura, Kenta</au><au>Han, Yibo</au><au>Nasu, Joji</au><au>Drichko, Natalia</au><au>Nakanishi, Yoshiki</au><au>Halim, Mario</au><au>Ishiguro, Yuki</au><au>Satake, Ryuta</au><au>Nishibori, Eiji</au><au>Yoshizawa, Masahito</au><au>Nakano, Takehito</au><au>Nozue, Yasuo</au><au>Wakabayashi, Yusuke</au><au>Ishihara, Sumio</au><au>Hagiwara, Masayuki</au><au>Sawa, Hiroshi</au><au>Nakatsuji, Satoru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Absence of Jahn-Teller transition in the hexagonal Ba^sub 3^CuSb^sub 2^O^sub 9^ single crystal</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><date>2015-07-28</date><risdate>2015</risdate><volume>112</volume><issue>30</issue><spage>9305</spage><pages>9305-</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>With decreasing temperature, liquids generally freeze into a solid state, losing entropy in the process. However, exceptions to this trend exist, such as quantum liquids, which may remain unfrozen down to absolute zero owing to strong quantum entanglement effects that stabilize a disordered state with zero entropy. Examples of such liquids include Bose-Einstein condensation of cold atoms, superconductivity, quantum Hall state of electron systems, and quantum spin liquid state in the frustrated magnets. Moreover, recent studies have clarified the possibility of another exotic quantum liquid state based on the spin-orbital entanglement in ... To confirm this exotic ground state, experiments based on single-crystalline samples are essential. However, no such single-crystal study has been reported to date. Here, we report, to our knowledge, the first single-crystal study on the spin-orbital liquid candidate, ..., and we have confirmed the absence of an orbital frozen state. In strongly correlated electron systems, orbital ordering usually appears at high temperatures in a process accompanied by a lattice deformation, called a static Jahn-Teller distortion. By combining synchrotron X-ray diffraction, electron spin resonance, Raman spectroscopy, and ultrasound measurements, we find that the static Jahn-Teller distortion is absent in the present material, which indicates that orbital ordering is suppressed down to the lowest temperatures measured. We discuss how such an unusual feature is realized with the help of spin degree of freedom, leading to a spin-orbital entangled quantum liquid state. (ProQuest: ... denotes formulae/symbols omitted.)</abstract><cop>Washington</cop><pub>National Academy of Sciences</pub></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2015-07, Vol.112 (30), p.9305
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_journals_1701284957
source JSTOR Archival Journals and Primary Sources Collection; PubMed Central
subjects Absolute zero
Condensation
Correlation analysis
Deformation
Entropy
Single crystals
Superconductivity
title Absence of Jahn-Teller transition in the hexagonal Ba^sub 3^CuSb^sub 2^O^sub 9^ single crystal
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A20%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Absence%20of%20Jahn-Teller%20transition%20in%20the%20hexagonal%20Ba%5Esub%203%5ECuSb%5Esub%202%5EO%5Esub%209%5E%20single%20crystal&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Katayama,%20Naoyuki&rft.date=2015-07-28&rft.volume=112&rft.issue=30&rft.spage=9305&rft.pages=9305-&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/&rft_dat=%3Cproquest%3E3767732461%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_17012849573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1701284957&rft_id=info:pmid/&rfr_iscdi=true