Loading…
Data Visualization Literacy: Investigating Data Interpretation Along the Novice—Expert Continuum
In the STEM fields, adequate proficiency in reading and interpreting graphs is widely held as a central element for scientific literacy given the importance of data visualizations to succinctly present complex information. Although prior research espouses methods to improve graphing proficiencies, t...
Saved in:
Published in: | Journal of college science teaching 2015-09, Vol.45 (1), p.84-90 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c937-a17c18fb3869b6fd1871e64f3aa666307675ac30a4bf9804ea626f3234c986723 |
container_end_page | 90 |
container_issue | 1 |
container_start_page | 84 |
container_title | Journal of college science teaching |
container_volume | 45 |
creator | Maltese, Adam V. Harsh, Joseph A. Svetina, Dubravka |
description | In the STEM fields, adequate proficiency in reading and interpreting graphs is widely held as a central element for scientific literacy given the importance of data visualizations to succinctly present complex information. Although prior research espouses methods to improve graphing proficiencies, there is little understanding about when and how students develop these skills during the course of their education. To address this gap in the research, we sought to create an assessment tool to measure differences in these abilities across groups with varied levels of experience in science, technology, engineering, and mathematics. This study presents results from a data visualization literacy assessment we created to begin to understand the development of expertise in this domain. Initial results indicate significant differences in the skill levels of expert and novice end-members, but little differentiation between the groups across the middle of this spectrum. Psychometric properties of the assessment are presented, and suggested implications for instruction are discussed. |
doi_str_mv | 10.2505/4/jcst15_045_01_84 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1707484877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43631889</jstor_id><sourcerecordid>43631889</sourcerecordid><originalsourceid>FETCH-LOGICAL-c937-a17c18fb3869b6fd1871e64f3aa666307675ac30a4bf9804ea626f3234c986723</originalsourceid><addsrcrecordid>eNpdkMFKxDAQhoMouK6-gCAUPNdNmjRJvS3rqgtFL4t4C2lM15Tdpibp4nryIXxCn8RoxYOHYWD-758ZfgBOEbzIcphPyKRRPqBcQBILCU72wAgVBKeEF3wfjCAkLM0wejwER943EKKMQjQC1ZUMMnkwvpdr8yaDsW1SmqCdVLvLZNFutQ9mFeftKvlBF20UO6fDwE7XNirhWSd3dmuU_nz_mL922oVkZtvo6vvNMTio5drrk98-Bsvr-XJ2m5b3N4vZtExVgVkqEVOI1xXmtKho_YQ4Q5qSGktJKcWQUZZLhaEkVV1wSLSkGa1xhokqOGUZHoPzYW3n7Esf3xaN7V0bLwrEICOccMYilQ2UctZ7p2vRObORbicQFN9RCiL-RxlNZ4Op8cG6PwfBFCPOC_wFOrFzxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1707484877</pqid></control><display><type>article</type><title>Data Visualization Literacy: Investigating Data Interpretation Along the Novice—Expert Continuum</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Social Science Premium Collection</source><source>Education Collection</source><creator>Maltese, Adam V. ; Harsh, Joseph A. ; Svetina, Dubravka</creator><creatorcontrib>Maltese, Adam V. ; Harsh, Joseph A. ; Svetina, Dubravka</creatorcontrib><description>In the STEM fields, adequate proficiency in reading and interpreting graphs is widely held as a central element for scientific literacy given the importance of data visualizations to succinctly present complex information. Although prior research espouses methods to improve graphing proficiencies, there is little understanding about when and how students develop these skills during the course of their education. To address this gap in the research, we sought to create an assessment tool to measure differences in these abilities across groups with varied levels of experience in science, technology, engineering, and mathematics. This study presents results from a data visualization literacy assessment we created to begin to understand the development of expertise in this domain. Initial results indicate significant differences in the skill levels of expert and novice end-members, but little differentiation between the groups across the middle of this spectrum. Psychometric properties of the assessment are presented, and suggested implications for instruction are discussed.</description><identifier>ISSN: 0047-231X</identifier><identifier>EISSN: 1943-4898</identifier><identifier>DOI: 10.2505/4/jcst15_045_01_84</identifier><identifier>CODEN: JSCTBN</identifier><language>eng</language><publisher>Abingdon: National Science Teachers Association</publisher><subject>College science ; College students ; Data analysis ; Data Interpretation ; Data visualization ; Educational research ; Graduate students ; Graph representations ; Individualized Instruction ; International environmental cooperation ; Kinematics ; Mathematical data ; Mathematics education ; Psychometrics ; RESEARCH AND TEACHING ; Scientific Literacy ; STEM education ; Visualization</subject><ispartof>Journal of college science teaching, 2015-09, Vol.45 (1), p.84-90</ispartof><rights>2015 National Science Teachers Association</rights><rights>Copyright National Science Teachers Association Sep/Oct 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c937-a17c18fb3869b6fd1871e64f3aa666307675ac30a4bf9804ea626f3234c986723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1707484877/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1707484877?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21357,21373,27901,27902,33588,33854,43709,43856,58213,58446,74192,74367</link.rule.ids></links><search><creatorcontrib>Maltese, Adam V.</creatorcontrib><creatorcontrib>Harsh, Joseph A.</creatorcontrib><creatorcontrib>Svetina, Dubravka</creatorcontrib><title>Data Visualization Literacy: Investigating Data Interpretation Along the Novice—Expert Continuum</title><title>Journal of college science teaching</title><description>In the STEM fields, adequate proficiency in reading and interpreting graphs is widely held as a central element for scientific literacy given the importance of data visualizations to succinctly present complex information. Although prior research espouses methods to improve graphing proficiencies, there is little understanding about when and how students develop these skills during the course of their education. To address this gap in the research, we sought to create an assessment tool to measure differences in these abilities across groups with varied levels of experience in science, technology, engineering, and mathematics. This study presents results from a data visualization literacy assessment we created to begin to understand the development of expertise in this domain. Initial results indicate significant differences in the skill levels of expert and novice end-members, but little differentiation between the groups across the middle of this spectrum. Psychometric properties of the assessment are presented, and suggested implications for instruction are discussed.</description><subject>College science</subject><subject>College students</subject><subject>Data analysis</subject><subject>Data Interpretation</subject><subject>Data visualization</subject><subject>Educational research</subject><subject>Graduate students</subject><subject>Graph representations</subject><subject>Individualized Instruction</subject><subject>International environmental cooperation</subject><subject>Kinematics</subject><subject>Mathematical data</subject><subject>Mathematics education</subject><subject>Psychometrics</subject><subject>RESEARCH AND TEACHING</subject><subject>Scientific Literacy</subject><subject>STEM education</subject><subject>Visualization</subject><issn>0047-231X</issn><issn>1943-4898</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ALSLI</sourceid><sourceid>CJNVE</sourceid><sourceid>M0P</sourceid><recordid>eNpdkMFKxDAQhoMouK6-gCAUPNdNmjRJvS3rqgtFL4t4C2lM15Tdpibp4nryIXxCn8RoxYOHYWD-758ZfgBOEbzIcphPyKRRPqBcQBILCU72wAgVBKeEF3wfjCAkLM0wejwER943EKKMQjQC1ZUMMnkwvpdr8yaDsW1SmqCdVLvLZNFutQ9mFeftKvlBF20UO6fDwE7XNirhWSd3dmuU_nz_mL922oVkZtvo6vvNMTio5drrk98-Bsvr-XJ2m5b3N4vZtExVgVkqEVOI1xXmtKho_YQ4Q5qSGktJKcWQUZZLhaEkVV1wSLSkGa1xhokqOGUZHoPzYW3n7Esf3xaN7V0bLwrEICOccMYilQ2UctZ7p2vRObORbicQFN9RCiL-RxlNZ4Op8cG6PwfBFCPOC_wFOrFzxA</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Maltese, Adam V.</creator><creator>Harsh, Joseph A.</creator><creator>Svetina, Dubravka</creator><general>National Science Teachers Association</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7XB</scope><scope>88B</scope><scope>8A4</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>M0P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20150901</creationdate><title>Data Visualization Literacy: Investigating Data Interpretation Along the Novice—Expert Continuum</title><author>Maltese, Adam V. ; Harsh, Joseph A. ; Svetina, Dubravka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c937-a17c18fb3869b6fd1871e64f3aa666307675ac30a4bf9804ea626f3234c986723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>College science</topic><topic>College students</topic><topic>Data analysis</topic><topic>Data Interpretation</topic><topic>Data visualization</topic><topic>Educational research</topic><topic>Graduate students</topic><topic>Graph representations</topic><topic>Individualized Instruction</topic><topic>International environmental cooperation</topic><topic>Kinematics</topic><topic>Mathematical data</topic><topic>Mathematics education</topic><topic>Psychometrics</topic><topic>RESEARCH AND TEACHING</topic><topic>Scientific Literacy</topic><topic>STEM education</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maltese, Adam V.</creatorcontrib><creatorcontrib>Harsh, Joseph A.</creatorcontrib><creatorcontrib>Svetina, Dubravka</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Education Database (Alumni Edition)</collection><collection>Education Periodicals</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Education Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of college science teaching</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maltese, Adam V.</au><au>Harsh, Joseph A.</au><au>Svetina, Dubravka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data Visualization Literacy: Investigating Data Interpretation Along the Novice—Expert Continuum</atitle><jtitle>Journal of college science teaching</jtitle><date>2015-09-01</date><risdate>2015</risdate><volume>45</volume><issue>1</issue><spage>84</spage><epage>90</epage><pages>84-90</pages><issn>0047-231X</issn><eissn>1943-4898</eissn><coden>JSCTBN</coden><abstract>In the STEM fields, adequate proficiency in reading and interpreting graphs is widely held as a central element for scientific literacy given the importance of data visualizations to succinctly present complex information. Although prior research espouses methods to improve graphing proficiencies, there is little understanding about when and how students develop these skills during the course of their education. To address this gap in the research, we sought to create an assessment tool to measure differences in these abilities across groups with varied levels of experience in science, technology, engineering, and mathematics. This study presents results from a data visualization literacy assessment we created to begin to understand the development of expertise in this domain. Initial results indicate significant differences in the skill levels of expert and novice end-members, but little differentiation between the groups across the middle of this spectrum. Psychometric properties of the assessment are presented, and suggested implications for instruction are discussed.</abstract><cop>Abingdon</cop><pub>National Science Teachers Association</pub><doi>10.2505/4/jcst15_045_01_84</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0047-231X |
ispartof | Journal of college science teaching, 2015-09, Vol.45 (1), p.84-90 |
issn | 0047-231X 1943-4898 |
language | eng |
recordid | cdi_proquest_journals_1707484877 |
source | JSTOR Archival Journals and Primary Sources Collection; Social Science Premium Collection; Education Collection |
subjects | College science College students Data analysis Data Interpretation Data visualization Educational research Graduate students Graph representations Individualized Instruction International environmental cooperation Kinematics Mathematical data Mathematics education Psychometrics RESEARCH AND TEACHING Scientific Literacy STEM education Visualization |
title | Data Visualization Literacy: Investigating Data Interpretation Along the Novice—Expert Continuum |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T10%3A24%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20Visualization%20Literacy:%20Investigating%20Data%20Interpretation%20Along%20the%20Novice%E2%80%94Expert%20Continuum&rft.jtitle=Journal%20of%20college%20science%20teaching&rft.au=Maltese,%20Adam%20V.&rft.date=2015-09-01&rft.volume=45&rft.issue=1&rft.spage=84&rft.epage=90&rft.pages=84-90&rft.issn=0047-231X&rft.eissn=1943-4898&rft.coden=JSCTBN&rft_id=info:doi/10.2505/4/jcst15_045_01_84&rft_dat=%3Cjstor_proqu%3E43631889%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c937-a17c18fb3869b6fd1871e64f3aa666307675ac30a4bf9804ea626f3234c986723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1707484877&rft_id=info:pmid/&rft_jstor_id=43631889&rfr_iscdi=true |