Loading…

Gaining (mutual) information about quark/gluon discrimination

A bstract Discriminating quark jets from gluon jets is an important but challenging problem in jet substructure. In this paper, we use the concept of mutual information to illuminate the physics of quark/gluon tagging. Ideal quark/gluon separation requires only one bit of truth information, so even...

Full description

Saved in:
Bibliographic Details
Published in:The journal of high energy physics 2014-11, Vol.2014 (11), p.1, Article 129
Main Authors: Larkoski, Andrew J., Thaler, Jesse, Waalewijn, Wouter J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A bstract Discriminating quark jets from gluon jets is an important but challenging problem in jet substructure. In this paper, we use the concept of mutual information to illuminate the physics of quark/gluon tagging. Ideal quark/gluon separation requires only one bit of truth information, so even if two discriminant variables are largely uncorrelated, they can still share the same “truth overlap”. Mutual information can be used to diagnose such situations, and thus determine which discriminant variables are redundant and which can be combined to improve performance. Using both parton showers and analytic resummation, we study a two-parameter family of generalized angularities, which includes familiar infrared and collinear (IRC) safe observables like thrust and broadening, as well as IRC unsafe variants like p T D and hadron multiplicity. At leading-logarithmic (LL) order, the bulk of these variables exhibit Casimir scaling, such that their truth overlap is a universal function of the color factor ratio C A /C F . Only at next-to-leading-logarithmic (NLL) order can one see a difference in quark/gluon performance. For the IRC safe angularities, we show that the quark/gluon performance can be improved by combining angularities with complementary angular exponents. Interestingly, LL order, NLL order, Pythia 8, and Herwig++ all exhibit similar correlations between observables, but there are significant differences in the predicted quark/gluon discrimination power. For the IRC unsafe angularities, we show that the mutual information can be calculated analytically with the help of a nonperturbative “weighted-energy function”, providing evidence for the complementarity of safe and unsafe observables for quark/gluon discrimination.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP11(2014)129