Loading…

Progress towards an acoustic determination of the Boltzmann constant at CEM-UVa

An acoustic gas thermometer was used to achieve a determination of the Boltzmann constant, kB, using a misaligned stainless steel (316L) spherical cavity with an internal volume of approximately 268 cm3. Measurements of the speed of sound while the cavity is filled with argon at the temperature of t...

Full description

Saved in:
Bibliographic Details
Published in:Metrologia 2015-10, Vol.52 (5), p.S257-S262
Main Authors: Pérez-Sanz, Fernando J, Segovia, José J, Martín, M Carmen, Villamañán, Miguel A, del Campo, Dolores, García, Carmen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c416t-5fe24b665664949a4d40e1b5273c9ee837fa251e2b7d48a2d1a40c1efe1665273
cites cdi_FETCH-LOGICAL-c416t-5fe24b665664949a4d40e1b5273c9ee837fa251e2b7d48a2d1a40c1efe1665273
container_end_page S262
container_issue 5
container_start_page S257
container_title Metrologia
container_volume 52
creator Pérez-Sanz, Fernando J
Segovia, José J
Martín, M Carmen
Villamañán, Miguel A
del Campo, Dolores
García, Carmen
description An acoustic gas thermometer was used to achieve a determination of the Boltzmann constant, kB, using a misaligned stainless steel (316L) spherical cavity with an internal volume of approximately 268 cm3. Measurements of the speed of sound while the cavity is filled with argon at the temperature of the triple point of water, 273.16 K, and at different pressures between 78.2 kPa and 0.9 MPa, were used to extrapolate the value of the speed of sound in argon at zero pressure. The internal volume of the resonator was accurately determined by measuring microwave resonance frequencies at the same temperature and pressure conditions as for the acoustic measurements. The measurements were taken at pressures from 78.2 kPa up to 901.3 kPa, and at 273.16 K. As the results of the measurements, we determined kB = (1.380 644 1   ±   0.000 022 1)  ×  10−23 J K−1 which means a relative standard uncertainty of 16 parts in 106.
doi_str_mv 10.1088/0026-1394/52/5/S257
format article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_1709443677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3797395901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-5fe24b665664949a4d40e1b5273c9ee837fa251e2b7d48a2d1a40c1efe1665273</originalsourceid><addsrcrecordid>eNp9kEtLAzEURoMoWKu_wE3AjZtxkkweM0st9QGVClq3IZ25o1OmSU1SRH-9GSoiLlzdzTkfl4PQKSUXlJRlTgiTGS0qnguWi_yRCbWHRlSWNFNCiX00-iEO0VEIK0KoStAIzR-8e_EQAo7u3fgmYGOxqd02xK7GDUTw686a2DmLXYvjK-Ar18fPtbEW186GaGzEJuLJ9D5bPJtjdNCaPsDJ9x2jxfX0aXKbzeY3d5PLWVZzKmMmWmB8KaWQkle8MrzhBOhSMFXUFUBZqNYwQYEtVcNLwxpqOKkptECTlKgxOt_tbrx720KIet2FGvreWEjPa6pEwUvJRZXQsz_oym29Td8lilScF1INg8WOqr0LwUOrN75bG_-hKdFDZD0k1ENCLZgWeoicrHxndW7za_Yf4wtMPXxI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709443677</pqid></control><display><type>article</type><title>Progress towards an acoustic determination of the Boltzmann constant at CEM-UVa</title><source>Institute of Physics</source><creator>Pérez-Sanz, Fernando J ; Segovia, José J ; Martín, M Carmen ; Villamañán, Miguel A ; del Campo, Dolores ; García, Carmen</creator><creatorcontrib>Pérez-Sanz, Fernando J ; Segovia, José J ; Martín, M Carmen ; Villamañán, Miguel A ; del Campo, Dolores ; García, Carmen</creatorcontrib><description>An acoustic gas thermometer was used to achieve a determination of the Boltzmann constant, kB, using a misaligned stainless steel (316L) spherical cavity with an internal volume of approximately 268 cm3. Measurements of the speed of sound while the cavity is filled with argon at the temperature of the triple point of water, 273.16 K, and at different pressures between 78.2 kPa and 0.9 MPa, were used to extrapolate the value of the speed of sound in argon at zero pressure. The internal volume of the resonator was accurately determined by measuring microwave resonance frequencies at the same temperature and pressure conditions as for the acoustic measurements. The measurements were taken at pressures from 78.2 kPa up to 901.3 kPa, and at 273.16 K. As the results of the measurements, we determined kB = (1.380 644 1   ±   0.000 022 1)  ×  10−23 J K−1 which means a relative standard uncertainty of 16 parts in 106.</description><identifier>ISSN: 0026-1394</identifier><identifier>EISSN: 1681-7575</identifier><identifier>DOI: 10.1088/0026-1394/52/5/S257</identifier><identifier>CODEN: MTRGAU</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>acoustic gas thermometry ; Acoustics ; Argon ; Austenitic stainless steels ; Boltzmann constant ; Constants ; Extrapolation ; Frequencies ; Heat resistant steels ; Holes ; Metrology ; Microwave resonance ; new kelvin ; Pressure ; Sound ; speed of sound ; Stainless steel ; Temperature ; Thermometers ; uncertainty budget</subject><ispartof>Metrologia, 2015-10, Vol.52 (5), p.S257-S262</ispartof><rights>2015 BIPM &amp; IOP Publishing Ltd</rights><rights>Copyright IOP Publishing Oct 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-5fe24b665664949a4d40e1b5273c9ee837fa251e2b7d48a2d1a40c1efe1665273</citedby><cites>FETCH-LOGICAL-c416t-5fe24b665664949a4d40e1b5273c9ee837fa251e2b7d48a2d1a40c1efe1665273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Pérez-Sanz, Fernando J</creatorcontrib><creatorcontrib>Segovia, José J</creatorcontrib><creatorcontrib>Martín, M Carmen</creatorcontrib><creatorcontrib>Villamañán, Miguel A</creatorcontrib><creatorcontrib>del Campo, Dolores</creatorcontrib><creatorcontrib>García, Carmen</creatorcontrib><title>Progress towards an acoustic determination of the Boltzmann constant at CEM-UVa</title><title>Metrologia</title><addtitle>MET</addtitle><addtitle>Metrologia</addtitle><description>An acoustic gas thermometer was used to achieve a determination of the Boltzmann constant, kB, using a misaligned stainless steel (316L) spherical cavity with an internal volume of approximately 268 cm3. Measurements of the speed of sound while the cavity is filled with argon at the temperature of the triple point of water, 273.16 K, and at different pressures between 78.2 kPa and 0.9 MPa, were used to extrapolate the value of the speed of sound in argon at zero pressure. The internal volume of the resonator was accurately determined by measuring microwave resonance frequencies at the same temperature and pressure conditions as for the acoustic measurements. The measurements were taken at pressures from 78.2 kPa up to 901.3 kPa, and at 273.16 K. As the results of the measurements, we determined kB = (1.380 644 1   ±   0.000 022 1)  ×  10−23 J K−1 which means a relative standard uncertainty of 16 parts in 106.</description><subject>acoustic gas thermometry</subject><subject>Acoustics</subject><subject>Argon</subject><subject>Austenitic stainless steels</subject><subject>Boltzmann constant</subject><subject>Constants</subject><subject>Extrapolation</subject><subject>Frequencies</subject><subject>Heat resistant steels</subject><subject>Holes</subject><subject>Metrology</subject><subject>Microwave resonance</subject><subject>new kelvin</subject><subject>Pressure</subject><subject>Sound</subject><subject>speed of sound</subject><subject>Stainless steel</subject><subject>Temperature</subject><subject>Thermometers</subject><subject>uncertainty budget</subject><issn>0026-1394</issn><issn>1681-7575</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEURoMoWKu_wE3AjZtxkkweM0st9QGVClq3IZ25o1OmSU1SRH-9GSoiLlzdzTkfl4PQKSUXlJRlTgiTGS0qnguWi_yRCbWHRlSWNFNCiX00-iEO0VEIK0KoStAIzR-8e_EQAo7u3fgmYGOxqd02xK7GDUTw686a2DmLXYvjK-Ar18fPtbEW186GaGzEJuLJ9D5bPJtjdNCaPsDJ9x2jxfX0aXKbzeY3d5PLWVZzKmMmWmB8KaWQkle8MrzhBOhSMFXUFUBZqNYwQYEtVcNLwxpqOKkptECTlKgxOt_tbrx720KIet2FGvreWEjPa6pEwUvJRZXQsz_oym29Td8lilScF1INg8WOqr0LwUOrN75bG_-hKdFDZD0k1ENCLZgWeoicrHxndW7za_Yf4wtMPXxI</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Pérez-Sanz, Fernando J</creator><creator>Segovia, José J</creator><creator>Martín, M Carmen</creator><creator>Villamañán, Miguel A</creator><creator>del Campo, Dolores</creator><creator>García, Carmen</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>8BQ</scope><scope>JG9</scope></search><sort><creationdate>20151001</creationdate><title>Progress towards an acoustic determination of the Boltzmann constant at CEM-UVa</title><author>Pérez-Sanz, Fernando J ; Segovia, José J ; Martín, M Carmen ; Villamañán, Miguel A ; del Campo, Dolores ; García, Carmen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-5fe24b665664949a4d40e1b5273c9ee837fa251e2b7d48a2d1a40c1efe1665273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>acoustic gas thermometry</topic><topic>Acoustics</topic><topic>Argon</topic><topic>Austenitic stainless steels</topic><topic>Boltzmann constant</topic><topic>Constants</topic><topic>Extrapolation</topic><topic>Frequencies</topic><topic>Heat resistant steels</topic><topic>Holes</topic><topic>Metrology</topic><topic>Microwave resonance</topic><topic>new kelvin</topic><topic>Pressure</topic><topic>Sound</topic><topic>speed of sound</topic><topic>Stainless steel</topic><topic>Temperature</topic><topic>Thermometers</topic><topic>uncertainty budget</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pérez-Sanz, Fernando J</creatorcontrib><creatorcontrib>Segovia, José J</creatorcontrib><creatorcontrib>Martín, M Carmen</creatorcontrib><creatorcontrib>Villamañán, Miguel A</creatorcontrib><creatorcontrib>del Campo, Dolores</creatorcontrib><creatorcontrib>García, Carmen</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>METADEX</collection><collection>Materials Research Database</collection><jtitle>Metrologia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pérez-Sanz, Fernando J</au><au>Segovia, José J</au><au>Martín, M Carmen</au><au>Villamañán, Miguel A</au><au>del Campo, Dolores</au><au>García, Carmen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Progress towards an acoustic determination of the Boltzmann constant at CEM-UVa</atitle><jtitle>Metrologia</jtitle><stitle>MET</stitle><addtitle>Metrologia</addtitle><date>2015-10-01</date><risdate>2015</risdate><volume>52</volume><issue>5</issue><spage>S257</spage><epage>S262</epage><pages>S257-S262</pages><issn>0026-1394</issn><eissn>1681-7575</eissn><coden>MTRGAU</coden><abstract>An acoustic gas thermometer was used to achieve a determination of the Boltzmann constant, kB, using a misaligned stainless steel (316L) spherical cavity with an internal volume of approximately 268 cm3. Measurements of the speed of sound while the cavity is filled with argon at the temperature of the triple point of water, 273.16 K, and at different pressures between 78.2 kPa and 0.9 MPa, were used to extrapolate the value of the speed of sound in argon at zero pressure. The internal volume of the resonator was accurately determined by measuring microwave resonance frequencies at the same temperature and pressure conditions as for the acoustic measurements. The measurements were taken at pressures from 78.2 kPa up to 901.3 kPa, and at 273.16 K. As the results of the measurements, we determined kB = (1.380 644 1   ±   0.000 022 1)  ×  10−23 J K−1 which means a relative standard uncertainty of 16 parts in 106.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0026-1394/52/5/S257</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0026-1394
ispartof Metrologia, 2015-10, Vol.52 (5), p.S257-S262
issn 0026-1394
1681-7575
language eng
recordid cdi_proquest_journals_1709443677
source Institute of Physics
subjects acoustic gas thermometry
Acoustics
Argon
Austenitic stainless steels
Boltzmann constant
Constants
Extrapolation
Frequencies
Heat resistant steels
Holes
Metrology
Microwave resonance
new kelvin
Pressure
Sound
speed of sound
Stainless steel
Temperature
Thermometers
uncertainty budget
title Progress towards an acoustic determination of the Boltzmann constant at CEM-UVa
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T22%3A45%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Progress%20towards%20an%20acoustic%20determination%20of%20the%20Boltzmann%20constant%20at%20CEM-UVa&rft.jtitle=Metrologia&rft.au=P%C3%A9rez-Sanz,%20Fernando%20J&rft.date=2015-10-01&rft.volume=52&rft.issue=5&rft.spage=S257&rft.epage=S262&rft.pages=S257-S262&rft.issn=0026-1394&rft.eissn=1681-7575&rft.coden=MTRGAU&rft_id=info:doi/10.1088/0026-1394/52/5/S257&rft_dat=%3Cproquest_iop_j%3E3797395901%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c416t-5fe24b665664949a4d40e1b5273c9ee837fa251e2b7d48a2d1a40c1efe1665273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1709443677&rft_id=info:pmid/&rfr_iscdi=true