Loading…

Methane oxidation in a biofilter (Part 1): Development of a mathematical model for designing and optimization

The aim of this work is the evaluation of the efficiency of such a biofilter, through the application of a mathematical model which describes the biological oxidation process. This mathematical model is able to predict the efficiency of the system under varying operating conditions. Literature data...

Full description

Saved in:
Bibliographic Details
Published in:Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering Toxic/hazardous substances & environmental engineering, 2015-11, Vol.50 (13), p.1393-1403
Main Authors: Amodeo, Corrado, Masi, Salvatore, Van Hulle, Stijn W. H., Zirpoli, Pierfrancesco, Mancini, Ignazio M., Caniani, Donatella
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The aim of this work is the evaluation of the efficiency of such a biofilter, through the application of a mathematical model which describes the biological oxidation process. This mathematical model is able to predict the efficiency of the system under varying operating conditions. Literature data have been used in order to build the model. The factors that mostly affect the process and which actually regulate the entire process have been highlighted in this work. Specifically, it was found that temperature, flow and methane concentration are the most important parameters that influence the system. The results obtained from the mathematical model showed also that the biofilter system is simple to implement and manage and allows the achievement of high efficiency of methane oxidation. In the optimal conditions for temperature (between 20-30°C), residence time (between 0.7-0.8 h) and methane molar fraction (between 20-25%) the efficiency of methane oxidation could be around 50%.
ISSN:1093-4529
1532-4117
DOI:10.1080/10934529.2015.1064277